探索云世界
【免费】基于数据驱动的模型预测控制电力系统机组组合优化
2024-05-0877
版权
版权声明:
本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《 阿里云开发者社区用户服务协议》和 《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写 侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
简介:【免费】基于数据驱动的模型预测控制电力系统机组组合优化
1 主要内容
该程序复现文章《Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework》,程序主要做的是一个基于数据驱动的电力系统机组组合调度模型,采用IEEE24节点系统作为研究对象,该模型的创新点在于:提出了一个闭环预测与优化(C-PO)框架,即利用NCUC模型的结构以及相关特征数据来训练一个以成本为导向的RES预测模型,该模型通过诱导的NCUC成本而不是统计预测误差来评估预测质量,并且在优化过程中采用拉格朗日松弛来加速训练过程,该模型理论深度较大,代码学习难度也较大,本次免费分享供相关方向同学参考。
原文模型及部分结果:
2 部分代码
Number_day = Validate_day_end - Validate_day_1st + 1;First_day_intuition = Validate_day_1st;Final_day_intuition = Validate_day_end;Scaler_load = 0.22;Scaler_SPG = 0.39;Scaler_WPG = 0.39;R_for_load = 0.10;R_for_RES = 0.05;Method_flag = 'CPO';Number_hour = 24;Number_RES = 5;%% -----------------------------SPO tunning----------------------------- %%lamda = 100000;Number_training_day = 2;Number_day_H_validity = 7; % The frequency of updating Predictor H.Number_historic_day = 7;Solver_flag = 'g';Solver_gap = 3;Solver_time = 10;%% -----------------------Prepare box for recorder---------------------- %%% Rec for UCRec_Decision_UC_I = cell(Number_day, 1);Rec_Decision_UC_P = cell(Number_day, 1);Rec_Decision_UC_R_h = cell(Number_day, 1);Rec_Decision_UC_R_c = cell(Number_day, 1);Rec_cost_UC_expected = cell(Number_day, 1);Rec_cost_UC_SUSD = cell(Number_day, 1);Rec_RES_prediction = cell(Number_day, 1);Rec_infea_UC_flag = cell(Number_day, 1);Rec_UC_time = cell(Number_day, 1);% Rec for EDRec_cost_ACT = cell(Number_day, 1);Rec_cost_UC = cell(Number_day, 1);Rec_cost_SUSD_all = cell(Number_day, 1);Rec_cost_SUSD_UC = cell(Number_day, 1);Rec_cost_SUSD_ED = cell(Number_day, 1);Rec_cost_P = cell(Number_day, 1);Rec_cost_LS = cell(Number_day, 1);Rec_cost_loss_ACT = cell(Number_day, 1);Rec_cost_loss_UC = cell(Number_day, 1);Rec_infea_ED_flag = cell(Number_day, 1);%% --------------------------Prepare box for CPO------------------------ %%% CostCPO_cost_ACT = zeros(Number_day, 1);CPO_cost_UC = zeros(Number_day, 1);CPO_cost_SUSD_all = zeros(Number_day, 1);CPO_cost_SUSD_UC = zeros(Number_day, 1);CPO_cost_SUSD_ED = zeros(Number_day, 1);CPO_cost_P = zeros(Number_day, 1);CPO_cost_LS = zeros(Number_day, 1);CPO_cost_loss_ACT = zeros(Number_day, 1);CPO_cost_loss_UC = zeros(Number_day, 1);% FlagCPO_infeasible_UC = zeros(Number_day, 1);CPO_infeasible_ED = zeros(Number_day, 1);%% -------------------------Set updating frequency---------------------- %%Number_period = ceil(Number_day/Number_day_H_validity);if Number_period == floor(Number_day/Number_day_H_validity) Number_day_in_period_full = Number_day_H_validity; Number_day_in_period_last = Number_day_H_validity; Period_size_list = ones(Number_period,1); Period_1st_list = zeros(Number_period,1); Period_end_list = zeros(Number_period,1); Period_size_list(1:Number_period-1) = Number_day_in_period_full; Period_size_list(Number_period) = Number_day_in_period_last;endif Number_period > floor(Number_day/Number_day_H_validity) Number_day_in_period_full = Number_day_H_validity; Number_day_in_period_last = Number_day - (Number_period - 1)*Number_day_H_validity; Period_size_list = ones(Number_period,1); Period_1st_list = zeros(Number_period,1); Period_end_list = zeros(Number_period,1); Period_size_list(1:Number_period-1) = Number_day_in_period_full; Period_size_list(Number_period) = Number_day_in_period_last;endfor i_period = 1:Number_period Period_1st_list(i_period) = (Validate_day_end+1) - sum(Period_size_list(i_period:end)); Period_end_list(i_period) = (Validate_day_1st-1) + sum(Period_size_list(1:i_period));end%% ------------------Prepare box for training details------------------- %%% Training detailCPO_TRA_Predictor_H = cell(Number_period, 1);CPO_TRA_Predictor_H_ele = cell(Number_period, 1);CPO_TRA_obj = zeros(Number_period, 1);CPO_TRA_cost_ERM = zeros(Number_period, 1);CPO_TRA_regulation = zeros(Number_period, 1);CPO_TRA_time = zeros(Number_period, 1);%% --------------------------Prepare box for pick----------------------- %%Picked_TRA_intuition = zeros(Number_training_day,Number_period);Picked_TRA_feature = cell(Number_period,1);Picked_TRA_load_city = cell(Number_period,1);Picked_TRA_reserve_load_req = cell(Number_period,1);Picked_TRA_reserve_RES_req = cell(Number_period,1);Picked_TRA_cost_perfect = cell(Number_period,1);%% ------------------------------Let's go------------------------------- %%for Current_period = 1:Number_period Number_dispatch_day = Period_size_list(Current_period); Dispatch_day_1st = Period_1st_list(Current_period); Dispatch_day_end = Period_end_list(Current_period); %% -----------------------Select training day----------------------- %% [Picked_TRA_intuition(:,Current_period),... Picked_TRA_feature{Current_period},... Picked_TRA_load_city{Current_period},... Picked_TRA_reserve_load_req{Current_period},... Picked_TRA_reserve_RES_req{Current_period},... Picked_TRA_cost_perfect{Current_period}]... = Step_00_Select_train_day(Dispatch_day_1st,... Dispatch_day_end,... Number_training_day,... Number_dispatch_day,... Scaler_load,... Scaler_SPG,... Scaler_WPG,... R_for_load,... R_for_RES,... Number_historic_day); %% -----------------------------Setp 01----------------------------- %% [CPO_TRA_Predictor_H{Current_period},... CPO_TRA_Predictor_H_ele{Current_period},... CPO_TRA_obj(Current_period),... CPO_TRA_cost_ERM(Current_period),... CPO_TRA_regulation(Current_period),... CPO_TRA_time(Current_period)]... = Step_01_CPO_train(lamda,... Scaler_load,... Scaler_SPG,... Scaler_WPG,... Solver_flag, Solver_gap, Solver_time,... Picked_TRA_feature{Current_period},... Picked_TRA_load_city{Current_period},... Picked_TRA_reserve_load_req{Current_period},... Picked_TRA_reserve_RES_req{Current_period},... Picked_TRA_cost_perfect{Current_period},... Number_training_day,... Method_flag);
3 程序结果
4 下载链接
目录
相关文章
前端工程化实践:从零搭建现代化项目构建流程
【4月更文挑战第6天】本文介绍了前端工程化的概念和重要性,包括模块化、自动化、规范化和CI/CD。接着,讨论了选择合适的工具链,如包管理器、构建工具和测试框架。然后,详细阐述了如何从零开始搭建一个基于React的现代化项目构建流程,涉及初始化、代码规范、测试、CSS处理、代码分割和CI/CD配置。最后,提到了持续优化与迭代的方向,如性能优化、类型检查和微前端。通过这样的实践,开发者可以提升开发效率和代码质量,为项目长远发展奠定基础。
「达摩院MindOpt」用于多目标规划(加权和法)
多目标规划(Multi-objective programming)是指在一个优化问题中需要同时考虑多个目标函数的优化。在多目标规划问题中,目标函数之间通常是互相冲突的,即在优化一个目标函数的过程中,另一个或几个目标函数可能会受到影响。因此,多目标规划问题的目标是找到一个解x,使得在满足约束的前提下,所有目标函数达到一个相对满意的折中。
132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了
李雅普诺夫函数是评估动态系统稳定性的重要工具,但其存在性难以证明。近期,Meta和Ecole des Ponts的研究团队利用基于Transformer的序列到序列模型,成功解决了多项式与非多项式系统中的李雅普诺夫函数发现难题,准确率高达99%,并在非多项式系统中实现了12.7%的新函数发现率。该研究不仅展示了生成模型在数学问题上的潜力,也为未解数学问题提供了新思路。
Spring MVC接收param参数(直接接收、注解接收、集合接收、实体接收)
Spring MVC提供了灵活多样的参数接收方式,可以满足各种不同场景下的需求。了解并熟练运用这些基本的参数接收技巧,可以使得Web应用的开发更加方便、高效。同时,也是提高代码的可读性和维护性的关键所在。在实际开发过程中,根据具体需求选择最合适的参数接收方式,能够有效提升开发效率和应用性能。
MaxCompute操作报错合集之执行SQL Union All操作时,数据类型产生报错,该怎么解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
电力系统机组组合优化调度(IEEE14节点、IEEE30节点、IEEE118节点)(Matlab代码实现)
电力系统机组组合优化调度(IEEE14节点、IEEE30节点、IEEE118节点)(Matlab代码实现)
【AI Agent系列】【LangGraph】2. 再进阶:给你的LangGraph加入循环逻辑(Cycles)
【AI Agent系列】【LangGraph】2. 再进阶:给你的LangGraph加入循环逻辑(Cycles)
热门文章
最新文章
1
【Docker容器化技术】docker安装与部署、常用命令、容器数据卷、应用部署实战、Dockerfile、服务编排docker-compose、私有仓库
2
Hologres助力AliExpress双11实时数仓升级
3
有了协程库,开发DPDK应用程序第一次可以这么简单
4
java----包的命名规范
5
Eclipse 插件市场安装 Cloud Toolkit
6
tensorflow object detection API训练公开数据集Oxford-IIIT Pets Dataset
7
如何在PostgreSQL中调试plpgsql存储过程(pldebugger, pldbgapi)
8
VideoMind:Chain-of-LoRA突破时间盲区让AI真正看懂长视频
9
filebeat多版本for Windows7
10
使用克隆配置任务配置边缘传输服务器角色