datasheet网

电脑版
提示:原网页已由神马搜索转码, 内容由pdf.elecfans.com提供.
会员中心
创作中心
发布
查Datasheet、查价格、查替代料
CXDB5CCAM-MK

CXDB5CCAM-MK

  • 厂商:

    CXMT(长鑫)

  • 封装:

    BGA-200

  • 描述:

    SRAM存储器 BGA-200

  • 数据手册
  • 价格&库存
CXDB5CCAM-MK 数据手册
fid en tia l an d C on LPDDR4X SDRAM Datasheet Preliminary Version 0.4 C XM T Pr iv ile Feb. 3, 2020 ge d ChangXin Memory Technologies, Inc. ChangXin Memory Technologies, Inc. _ Confidential DISCLAIMER fid en tia l The information presented in this document is for reference purposes only and may contain inaccuracies, omissions and errors. The information contained herein is subject to change or rendered obsolete without notice, including but not limited to product and roadmap changes, component changes, new model and/or product releases, firmware upgrades, or the like. This document supersedes and replaces all information supplied prior to the publication hereof. Any information set forth in this document shall not be replied on if the product described therein is obtained from any unauthorized distributor or other source not authorized by ChangXin Memory Technologies, Inc. (hereinafter referred to as “CXMT”). C on CXMT assumes no obligation to update, correct or revise this information. CXMT reserves the right to update, correct or revise this information without notice; in addition, CXMT has no obligation to notify any party of such updates, corrections and revisions. an d This document and all information discussed herein remain the sole and exclusive property of CXMT. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. ge d CXMT MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. XM T Pr iv ile CXMT SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURES RATES AND LIMITED USEFUL LIVES. CUSTOMERS ARE SOLEY RESPONSIBLE FOR DETERMINING WHETHER THE CXMT PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER’S SYTTEM, APPLICATION OR PRODUCT. IN NO EVENT SHALL CXMT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMAITON CONTAINED HEREIN, EVEN IF CXMT HAS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. C CONFIDENTIALITY OBLIGATION This is to remind you of your continuing confidentiality obligation as set forth in the NonDisclosure Agreement or the like, executed between you and CXMT prior to this meeting and/or visit CXMT and/or access any CXMT information by other means, directly or indirectly, even if it appears to be pseudonymous or anonymous. CXMT reserves the right to pursue any adequate legal action, including injunctive relief, in the case of any violations. ChangXin Memory Technologies, Inc. _ Confidential Revision History 0.1 Nov. 9, 2018 Initial release 0.2 Oct. 9, 2019 Update ordering information 0.3 Nov. 9, 2019 Update ordering information 0.4 Feb. 3, 2020 Update preliminary IDD Remark l Description fid en tia Date C XM T Pr iv ile ge d an d C on Revision No. ChangXin Memory Technologies, Inc. _ Confidential Contents 1. Core Specifications 7 l 1.1  Ordering Options 8 fid en tia 1.2  Part Number Decoding 8 1.3  Address Table 8 2. Physical Specifications 9 2.1  200-Ball x32 Discrete Package Dimension 10 on 2.2  x32 Discrete Package Ballout 11 2.3  Block Diagram 12 C 2.4  Pad Definition 15 an d 3. Absolute Maximum DC Ratings 17 4. AC and DC Operating Conditions 19 4.1  Recommended DC Operating Conditions for Low Voltage 20 ge d 4.2  Input Leakage Current 21 4.3  Input/Output Leakage Current 21 ile 4.4  Operating Temperature Range 21 4.5  Single Ended Output Slew Rate 22 iv 4.6  Differential Output Slew Rate 24 Pr 5. AC and DC Input/Output Measurement Levels 25 5.1  1.1V High Speed LVCMOS (HS_LLVCMOS) 26 XM T 5.1.1  Standard Specifications 26 5.1.2  DC Electrical Characteristics 26 5.1.3  AC Overshoot and Undershoot 28 C 5.2  Differential Input Voltage 28 5.2.1  Differential Input Voltage for Clock 28 5.2.2  Peak Voltage Calculation Method 30 5.3  Single-Ended Input Voltage for Clock 30 ChangXin Memory Technologies, Inc. _ Confidential 5.4  AC/DC Input level for ODT Input 41 5.5  Overshoot and Undershoot for LVSTL 42 5.6  Driver Output Timing Reference Load 42 l 5.7  LVSTL(Low Voltage Swing Terminated Logic) IO System 44 fid en tia 6. Input/Output Capacitance 46 7. IDD Test Conditions and Specifications 47 7.1  IDD Measurement Conditions 48 7.2  IDD Specifications 54 on 7.3  LPDDR4X IDD Parameters - Single Die 57 7.4  LPDDR4X IDD6 Parameters - Single Die 59 C 8. Electrical Characteristics and AC Timing 60 an d 8.1  Clock Specification 60 8.1.1  Definition for tCK(avg) and nCK 60 8.1.2  Definition for tCK(abs) 60 ge d 8.2  Clock Timing 62 8.3  Temperature Derating for AC Timing 62 ile 8.4  CA Rx Voltage and Timing 63 8.5  DRAM Data Timing 67 iv 8.6  DQ Rx Voltage and Timing 69 Pr 9. AC Timing Parameters 74 9.1  Core AC Timing 75 XM T 9.2  Read AC Timing 76 9.3  tDQSCK Timing 77 9.4  Write AC Timing 78 C 9.5  Self Refresh Timing 78 9.6  Mode Register Read/Write AC Timing 79 9.7  VRCG Enable/Disable Timing 79 9.8  Command Bus Training AC Timing 80 ChangXin Memory Technologies, Inc. _ Confidential 9.9  Frequency Set Point Timing 84 9.10  Write Leveling Timing 85 9.11  MPC [Write FIFO] AC Timing 85 l 9.12  DQS Interval Oscillator AC Timing 86 fid en tia 9.13  Read Preamble Training Timing 86 9.14  ZQ Calibration Timing 86 9.15  ODT CA AC Timing 86 C XM T Pr iv ile ge d an d C on 9.16  Power-Down AC Timing 87 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 1. Core Specifications Through this section you will read contents as below: fid en tia l Ordering Options on Page 8 Part Number Decoding on Page 8 C XM T Pr iv ile ge d an d C on Address Table on Page 8 7 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 1.1  Ordering Options Table 1-1  LPDDR4X Device Ordering Information Density Organization Data Rate Package CXDB3ABAM-MK CXDB4ABAM-MK CXDBBCCAM-MK CXDB5CCAM-MK 1GB 2GB 3GB 4GB 2CH x32 2CH x32 2CH x32 2CH x32 3733 Mbps 3733 Mbps 3733 Mbps 3733 Mbps 200 Ball Discrete 200 Ball Discrete 200 Ball Discrete 200 Ball Discrete CX D 4 B A B A M M K C Company CX: Chang Xin Memory fid en tia on 1.2  Part Number Decoding l Part Number an d Product Family D: DRAM Product Type B: LPDDR4X Operating Temp. M: Mobile Temp.(-25 °C~85 °C) Product Version M: 1st version Voltage A: VDD1/VDD2/VDDQ: 1.8V/1.1V/1.1V& 0.6V Config IO/CH/CS B: x32,2CH,1CS C: x32,2CH,2CS ile ge d Product Density 3: 8Gb 4: 16Gb B: 24Gb 5: 32Gb Package Type A: 200ball FBGA 10x15 DDP C: 200ball FBGA 10x15 QDP Speed Type K: 3733 Mbps Pr iv 1.3  Address Table Table 1-2  Die Addressing Table 256Mb x16 512Mb x16 Bank Address BA0~BA2 BA0~BA2 Row Address A0~A14 A0~A15 Column Address A0~A9 A0~A9 C XM T Die Configuration 8 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 2. Physical Specifications This chapter will introduce the 200-ball discrete package dimension, ballout assignment and pad fid en tia l definition. • 200-Ball x32 Discrete Package Dimension on Page 10 • x32 Discrete Package Ballout on Page 11 • Block Diagram on Page 12 C XM T Pr iv ile ge d an d C on • Pad Definition on Page 15 9 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 2.1  200-Ball x32 Discrete Package Dimension Units: Millimeters Package Overview Seating Plane C 0.08 C 200* 0.31 ± 0.05 Post Reflow ( 0.28 SMD Ball Pads) 11 10 9 8 5 4 3 2 A1 INDEX Mark fid en tia 12 1 0.22 ± 0.05 A B C D E F G H J K N P R T C U on 13.65 15 ± 0.1 L M V W 0.65 TYP Y an d AA AB 0.8 TYP A 8.8 B 10 ± 0.1 Bottom View ge d Side View l A1 INDEX Mark 0.1 M C A B 0.9 ± 0.1 Top View C XM T Pr iv ile Figure 2-1  200-Ball x32 Discrete FBGA Package Dimension 10 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 2.2  x32 Discrete Package Ballout 1 2 3 4 5 DNU DNU VSS VDD2 ZQ0 ZQ1 DQ7_A VDDQ VDDQ DQ15_A VDDQ A 6 7 8 9 VDD2 10 11 12 VSS DNU DNU DQ8_A DNU B DQ0_A VDDQ VSS DQ1_A DMI0_A DQ6_A l DNU fid en tia C DQ14_A DMI1_A DQ9_A VSS VSS VDDQ VDDQ DQ2_A DQS0_c_A DQ5_A VSS VSS VDDQ DQ4_A VDD2 VDD2 DQ12_A VDDQ VDD1 VSS VSS VDD1 VSS ZQ2 VSS CS0_A VDD2 VDD2 CA2_A CA3_A CA4_A VDD2 D VSS DQS0_t_A VDDQ VSS VSS DQS1_t_A VSS E VSS DQ3_A VDD2 CA0_A CS1_A on H J VSS DQ11_A VDD1 G VSS ODTCA_A VSS VDDQ DQ13_ADQS1_c_A DQ10_A F VDD1 VSS VSS CA1_A VSS VDD2 VSS VDD2 VDD2 VSS VDD2 VSS CA1_B VSS CKE0_B CKE1_B VDD2 CA0_B CS1_B CS0_B VDD2 VDD2 CA2_B VSS VDD1 VSS VSS VDD1 VDDQ DQ4_B VDD2 VDD2 DQ12_B VDDQ DQ11_B VDD1 DQ2_B DQS0_c_B DQ5_B VSS VSS DQ13_BDQS1_c_B DQ10_B VSS DQS0_t_B VSS VDDQ VDDQ DQ1_B DMI0_B DQ6_B VSS VSS CKE0_A CKE1_A CK_t_A CK_c_A N VSS P R T DQ3_B VDD1 V VSS W VSS VDD2 VSS CA5_B VSS CA3_B CA4_B VDD2 CS2_B CKE2_A CKE2_B C VDD2 ile VDDQ VSS VSS ge d VSS ODTCA_B U CA5_A VDD2 CS2_A VSS VSS VSS an d K VSS CK_t_B CK_c_B VSS VDD2 VSS RESET_n DQS1_t_B VSS VSS VSS VDDQ Y VSS DQ14_B DMI1_B DQ9_B VSS iv AA DNU DQ0_B VDDQ DQ7_B VDDQ VDDQ DQ15_B VDDQ DQ8_B DNU DNU VSS VDD2 VSS VSS VDD2 DNU DNU Pr AB XM T DNU VSS Figure 2-2  x32 Discrete Package Ballout Note: 1  0.8mm pitch (X-axis), 0.65mm pitch (Y-axis), 22 rows using MO-311 0.80mm Pitch 2  Top View, A1 in top left corner. CS1_A/B, CE1_A/B, ZQ1 is floating for 2GB package. C 3  ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package. 4  ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3-rank package. For 1-rank and 2-rank package those balls are NC. 5  Die pad VSS and VSSQ signals are combined to VSS package balls. 6  Package requires dual channel die or functional equivalent of single channel die-stack. 11 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 2.3  Block Diagram VDD1 VDD2 Vss VDDQ VDDQ RZQ l ZQ0 fid en tia Reset_n CS0_B CS0_A CKE0_B CKE0_A Channel A Die0 DMI[1:0]_A DQ[15:0]_A DQS[1:0]_t_A DQS[1:0]_c_A Channel B Die1 4G bit 4G bit ODT_CA ODT_CA DMI[1:0]_B DQ[15:0]_B DQS[1:0]_t_B DQS[1:0]_c_B ODT_CA_B an d C ODT_CA_A CK_c_B CK_t_B CA[5:0]_B on CK_c_A CK_t_A CA[5:0]_A ge d Figure 2-3  Dual-Die, Dual-Channel, Single-Rank Package Block Diagram (1GB x32 I/O) VDD1 VDD2 Vss VDDQ CKE0_A Pr CK_c_A CK_t_A CA[5:0]_A XM T DMI[1:0]_A DQ[15:0]_A DQS[1:0]_t_A DQS[1:0]_c_A CS0_B CKE0_B Channel A Die0 Channel B Die1 8G bit 8G bit ODT_CA ODT_CA C ODT_CA_A ZQ0 ile CS0_A RZQ iv Reset_n VDDQ CK_c_B CK_t_B CA[5:0]_B DMI[1:0]_B DQ[15:0]_B DQS[1:0]_t_B DQS[1:0]_c_B ODT_CA_B Figure 2-4  Dual-Die, Dual-Channel, Single-Rank Package Block Diagram (2GB x32 I/O) 12 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 VDD1 VDD2 Vss VDDQ VDDQ RZQ CS0_B fid en tia CS0_A l ZQ0 Reset_n CKE0_B CKE0_A Channel A Die0 8G bit DMI[1:0]_A DQ[15:0]_A DQS[1:0]_t_A DQS[1:0]_c_A Channel B Die1 8G bit ODT_CA ODT_CA_A CK_c_B CK_t_B CA[5:0]_B ODT_CA DMI[1:0]_B DQ[15:0]_B DQS[1:0]_t_B DQS[1:0]_c_B ODT_CA_B on CK_c_A CK_t_A CA[5:0]_A VDDQ RZQ C ZQ1 CS1_A Channel B Die3 4G bit ge d Channel A Die2 4G bit ODT_CA ODT_CA VSS ile VSS CS1_B CKE1_B an d CKE1_A C XM T Pr iv Figure 2-5  Quad-Die, Dual-Channel, Dual-Rank Package Block Diagram (3GB x32 I/O) 13 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 VDD1 VDD2 Vss VDDQ VDDQ RZQ ZQ0 CS0_B CS0_A CKE0_B CK_c_A CK_t_A CA[5:0]_A Channel A Die0 8G bit DMI[1:0]_A DQ[15:0]_A DQS[1:0]_t_A DQS[1:0]_c_A CK_c_B CK_t_B CA[5:0]_B Channel B Die1 8G bit ODT_CA ODT_CA_A fid en tia CKE0_A l Reset_n DMI[1:0]_B DQ[15:0]_B DQS[1:0]_t_B DQS[1:0]_c_B ODT_CA_B ODT_CA VDDQ RZQ on ZQ1 CS1_B C CS1_A CKE1_A Channel B Die3 8G bit an d Channel A Die2 8G bit ge d ODT_CA VSS CKE1_B ODT_CA VSS C XM T Pr iv ile Figure 2-6  Quad-Die, Dual-Channel, Dual-Rank Package Block Diagram (4GB x32 I/O) 14 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 2.4  Pad Definition “_A” and “_B” indicate DRAM channels. “_A” pads are present in all devices while “_B” pads are fid en tia l present in dual channel SDRAM devices only. LPDDR4X pad definitions are the same as LPDDR4, except ODT_CA pins as described in Table 1-3. Table 2-3  Pad Definition Description Input Clock: CK_t and CK_c are differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c. AC timings for CA parameters are referenced to CK. Each channel (A& B) has its own clock pair. Input Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock circuits, input buffers, and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is part of the command code. Each channel (A& B) has its own CKE signal. Input Command/Address Inputs: CA signals provide the Command and Address inputs according to the Command Truth Table. Each channel (A&B) has its own CA signals. I/O Data Input/Output: Bi-direction data bus. I/O Data Strobe: DQS_t and DQS_c are bi-directional differential output clock signals used to strobe data during a READ or WRITE. The Data Strobe is generated by the DRAM for a READ and is edge-aligned with Data. The Data Strobe is generated by the Memory Controller for a WRITE and must arrive prior to Data. Each byte of data has a Data Strobe signal pair. Each channel (A& B) has its own DQS strobes. I/O Data Mask Inversion: DMI is a bi-directional signal which is driven HIGH when the data on the data bus is inverted, or driven LOW when the data is in its normal state. Data Inversion can be disabled via a mode register setting. Each byte of data has a DMI signal. Each channel(A& B) has its own DMI signals. This signal is also used along with the DQ signals to provide write data masking information to the DRAM. The DMI pin function - Data Inversion or Data mask depends on Mode Register setting. Pr iv DQ[15:0]_A, DQ[15:0]_B Chip Select: CS is part of the command code. Each channel (A& B) has its own CS signal. ile CS_A, CS_B CA[5:0]_A, CA[5:0]_B Input ge d CKE_A, CKE_B C XM T DQS[1:0]_t_A,DQS[1:0]_c_A, DQS[1:0]_t_B, DQS[1:0]_c_B DMI[1:0]_A, DMI[1:0]_B an d C CK_t_A, CK_c_A, CK_t_B, CK_c_B Type on Symbol 15 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Symbol Type ZQ Reference VDDQ,VDD1,VDD2 Supply VSS, VSSQ GND Ground Reference: Power supply ground reference RESET_n Input RESET: When asserted LOW, the RESET_n signal resets all channels of the die. There is one RESET_n pad per die. Input CA ODT Control: LPDDR4: The ODT_CA pin is used in conjunction with the Mode Register to turn on/off the On-Die-Termination for CA pins. LPDDR4X:The ODT_CA pin is ignored by LPDDR4X devices. ODT_ CS/CA/CK Function is fully controlled through MR11 and MR22. The ODT_CA pin shall be connected to either VDD2 or Vss. Calibration Reference: Used to calibrate the output drive strength and the termination resistance. There is one ZQ pin per die. The ZQ pin shall be connected to VDDQ through a 240Ω ± 1% resistor. fid en tia l Power Supplies: Isolated on the die for improved noise immunity. C XM T Pr iv ile ge d an d C on ODT_CA_A ,ODT_CA_B Description 16 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 3. Absolute Maximum DC Ratings This chapter specifies absolute maximum DC ratings. Stresses greater than those listed may fid en tia l cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to C XM T Pr iv ile ge d an d C on absolute maximum rating conditions for extended periods may affect reliability. 17 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 3-4  Absolute Maximum DC Ratings VDD1 supply voltage relative to VSS VDD2 supply voltage relative to VSS1 VDDQ supply voltage relative to VSSQ1 Voltage on any ball except VDD1 relative to VSS Storage Temperature2 VDD1 VDD2 VDDQ VIN, VOUT TSTG Min Max -0.4 1.5 -55 125 -0.4 2.1 Unit V °C l Symbol 1 fid en tia Parameter Note: 1  See “Power-Ramp” for relationships between power supplies. C XM T Pr iv ile ge d an d C on 2  Storage temperature is the case surface temperature on the center/top side of the LPDDR4X device. For the measurement conditions, please refer to JESD51-2. 18 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 4. AC and DC Operating Conditions This chapter points out four key conditions for low power device working reliably, safely and l legally, which are DC operating voltage, input/output leakage current, temperature, single-ended fid en tia and differential output slew rate. • Recommended DC Operating Conditions for Low Voltage on Page 20 • Input Leakage Current on Page 21 • Operating Temperature Range on Page 21 an d • Single Ended Output Slew Rate on Page 22 C on • Input/Output Leakage Current on Page 21 C XM T Pr iv ile ge d • Differential Output Slew Rate on Page 24 19 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 4.1  Recommended DC Operating Conditions for Low Voltage Table 4-5  LPDDR4 Recommended DC Operating Conditions Min 1.7 1.06 1.06 Note: 1  VDD1 uses significantly less current than VDD2. Typ 1.8 1.1 1.1 Max 1.95 1.17 1.17 Unit V V V Note 1,2 1,2,3 2,3 l Symbol VDD1 VDD2 VDDQ fid en tia DRAM Core 1 Power Core 1 Power/Input Buffer Power I/O Buffer Power 2  The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball. on 3  VdIVW and TdIVW limits described elsewhere in this document apply for voltage noise on supply voltages of up to 45 mV (peak-to-peak) from DC to 20MHz. Symbol VDD1 VDD2 VDDQ Min 1.7 1.06 0.57 an d DRAM Core 1 Power Core 1 Power/Input Buffer Power I/O Buffer Power C Table 4-6  LPDDR4X Recommended DC Operating Conditions Note: Typ 1.8 1.1 0.6 Max 1.95 1.17 0.65 Unit V V V Note 1,2 1,2,3 2,3,4,5 ge d 1  VDD1 uses significantly less current than VDD2. 2  The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball. ile 3  The voltage noise tolerance from DC to 20 MHz exceeding a pk-pk tolerance of 45 mV at the DRAM ball is not included in the TdIVW. iv 4  VDDQ(max) may be extended to 0.67 V as an option in case the operating clock frequency is equal or less than 800 Mhz. C XM T Pr 5  Pull up, pull down and ZQ calibration tolerance spec is valid only in normal VDDQ tolerance range (0.57 V - 0.65 V). 20 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 4.2  Input Leakage Current Table 4-7  Input Leakage Current Symbol IL Min -4 Max 4 Unit uA l Parameter/Condition Input Leakage current1,2 fid en tia Note: 1  For CK_t, CK_c, CKE, CS, CA, ODT_CA and RESET_n. Any input 0V ≤ VIN ≤ VDD2 (All other pins not under test = 0V). 2  CA ODT is disabled for CK_t, CK_c, CS, and CA. on 4.3  Input/Output Leakage Current Table 4-8  Input/Output Leakage Current Symbol IOZ Max 5 Unit uA an d Note: Min -5 C Parameter/Condition Input/Output Leakage current1,2 1  For DQ, DQS_t, DQS_c and DMI. Any I/O 0V ≤ VOUT ≤ VDDQ. 2  I/Os status are disabled: High Impedance and ODT Off. ge d 4.4  Operating Temperature Range TOPER Min -25 85 Max 85 105 Unit °C °C Pr Note: Parameter/Condition iv Parameter/Condition Standard Elevated ile Table 4-9  Operating Temperature Range XM T 1  Operating Temperature is the case surface temperature on the center-top side of the LPDDR4 device. For the measurement conditions, please refer to JESD51-2. 2  Some applications require operation of LPDDR4 in the maximum temperature conditions in the Elevated Temperature Range between 85 °C and 105 °C case temperature. For LPDDR4 devices, derating may be necessary to operate in this range. See MR4. C 3  Either the device case temperature rating or the temperature sensor may be used to set an appropriate refresh rate, determine the need for AC timing derating and/or monitor the operating temperature. When using the temperature sensor, the actual device case temperature may be higher than the TOPER rating that applies for the Standard or Elevated Temperature Ranges. For example, TCASE may be above 85 °C when the temperature sensor indicates a temperature of less than 85 °C. 21 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 4.5  Single Ended Output Slew Rate delta TFse on VOLAC) fid en tia Vcent l VOH(AC) delta TRse C Figure 4-7  Single Ended Output Slew Rate Definition an d Table 4-10  LPDDR4 Output Slew Rate (Single-ended) Symbol Value Unit Min Max 3.5 9 V/ns Single-ended Output Slew Rate (VOH = VDDQ/3) SRQsea Output slew-rate matching Ratio (Rise to Fall) 0.8 1.2 a SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), se: Single-ended Signals ge d Parameter Note: ile 1  Measured with output reference load. Pr iv 2  The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. 3  The output slew rate for falling and rising edges is defined and measured between VOL(AC) = 0.2*VOH(DC) and VOH(AC) = 0.8*VOH(DC). XM T 4  Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching. Table 4-11  LPDDR4X Output Slew Rate (Single-ended) for 0.6V VDDQ Symbol Value Unit Min Max 3.0 9 V/ns Single-ended Output Slew Rate (VOH = VDDQ*0.5) SRQsea Output slew-rate matching Ratio (Rise to Fall) 0.8 1.2 a SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), se: Single-ended Signals C Parameter 22 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  Measured with output reference load. 2  The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. fid en tia l 3  The output slew rate for falling and rising edges is defined and measured between VOL(AC) = 0.2*VOH(DC) and VOH(AC) = 0.8*VOH(DC). C XM T Pr iv ile ge d an d C on 4  Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching. 23 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 fid en tia l 4.6  Differential Output Slew Rate on 0 delta TRdiff C delta TFdiff an d Figure 4-8  Differential Output Slew Rate Definition Table 4-12  LPDDR4X Differential Output Slew Rate Value Min Max Differential Output Slew Rate (VOH = VDDQ/3 SRQdiffa 7 18 a SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: differential Signals Symbol ge d Parameter V/ns ile Note: Unit 1  Measured with output reference load. Pr iv 2  The output slew rate for falling and rising edges is defined and measured between VOL(AC) = -0.8*VOH(DC) and VOH(AC) = 0.8*VOH(DC). 3  Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching Table 4-13  LPDDR4X Differential Output Slew Rate for 0.6V VDDQ XM T Value Min Max Differential Output Slew Rate (VOH = VDDQ*0.5) SRQdiffa 6 18 a SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: differential Signals Parameter Symbol Unit V/ns C Note: 1  Measured with output reference load. 2  The output slew rate for falling and rising edges is defined and measured between VOL(AC) = -0.8*VOH(DC) and VOH(AC) = 0.8*VOH(DC). 3  Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching. 24 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5. AC and DC Input/Output Measurement Levels This chapter mainly defines DC electrical characteristics for input signals, AC overshoot and l undershoot specifications, differential input voltage specifications, and output driver to ensure the fid en tia normal operation of LPDDR4X SDRAM. • 1.1V High Speed LVCMOS (HS_LLVCMOS) on Page 26 • Differential Input Voltage on Page 28 an d • Overshoot and Undershoot for LVSTL on Page 42 C • AC/DC Input level for ODT Input on Page 41 on • Single-Ended Input Voltage for Clock on Page 30 • Driver Output Timing Reference Load on Page 42 C XM T Pr iv ile ge d • LVSTL(Low Voltage Swing Terminated Logic) IO System on Page 44 25 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.1  1.1V High Speed LVCMOS (HS_LLVCMOS) 5.1.1  Standard Specifications fid en tia l All voltages are referenced to ground except where noted. 5.1.2  DC Electrical Characteristics 5.1.2.1  Input Level for CKE on This definition applies to CKE_A/ CKE_B. Table 5-14  Input Level for CKE Min 0.75*VDD2 -0.2 0.65*VDD2 -0.2 C Symbol VIH(AC) VIL(AC) VIH(DC) VIL(DC) an d Parameter Input high level (AC)1 Input low level (AC)1 Input high level (DC) Input low level (DC) Note: C XM T Pr iv ile ge d Refer AC Overshoot and Undershoot for VIH(AC) and VIL(AC) 26 ChangXin Memory Technologies, Inc. _ Confidential Max VDD2+0.2 0.25*VDD2 VDD2+0.2 0.35*VDD2 Unit V V V V LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 VIH(AC) VIH VIH(DC) VIL(DC) Don't Care l VIL(AC) VIL fid en tia Input Level Figure 5-9  Input AC Timing Definition for CKE Note: 1  AC level is guaranteed transition point. on 2  DC level is hysteresis. C 5.1.2.2  Input Level for Reset_n and ODT_CA an d This definition applies to Reset_n and ODT_CA. Table 5-15  Input Level for Reset_n and ODT_CA Symbol VIH VIL ge d Parameter Input high level1 Input low level1 Note: Min 0.80*VDD2 -0.2 Max VDD2+0.2 0.20*VDD2 ile Refer AC Overshoot and Undershoot for VIH and VIL VIH VIL VIH VIL Don't Care XM T Pr iv Input Level C Figure 5-10  Input AC Timing Definition for Reset_n and ODT_CA 27 ChangXin Memory Technologies, Inc. _ Confidential Unit V V LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.1.3  AC Overshoot and Undershoot Table 5-16  AC Over/Undershoot for Address and Control Pins Specification 0.35 V 0.35 V 0.8 V-ns 0.8 V-ns fid en tia l Parameter Maximum peak Amplitude allowed for overshoot area Maximum peak Amplitude allowed for undershoot area Maximum overshoot area above VDD/VDDQ Maximum undershoot area below VSS/VSSQ Overshoot Area Maximum Amplitude on VDD VSS C Volts(V) an d Maximum Amplitude Undershoot Area Time(ns) ge d Figure 5-11  AC Overshoot and Undershoot Definition for Address and Control Pins ile 5.2  Differential Input Voltage Pr iv 5.2.1  Differential Input Voltage for Clock The minimum input voltage need to satisfy both Vindiff_CK and Vindiff_CK/2 specification at input XM T receiver and their measurement period is 1tCK. Vindiff_CK is the peak to peak voltage centered C on 0 volts differential and Vindiff_CK/2 is max and min peak voltage from 0V. 28 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 fid en tia l Vindiff_CK/2 Vindiff_CK/2 0.0 Half cycle Time on Differential Input Voltage: CK_t, CK_c Peak Voltage Peak Voltage an d Table 5-17  CK Differential Input Voltage C Figure 5-12  CK Differential Input Voltage Data Rate Symbol CK differential input voltage a. 1600/1867a Vindiff_CK 2133/2400/3200 3733 Unit Min Max Min Max Min Max 420 - 380 - 360 - ge d Parameter The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. ile Note: iv The peak voltage of Differential CK signals is calculated in a following equation. Pr • Vindiff_CK = (Max Peak Voltage) - (Min Peak Voltage) • Max Peak Voltage = Max(f(t)) • Min Peak Voltage = Min(f(t)) C XM T • f(t) = VCK_t - VCK_c 29 ChangXin Memory Technologies, Inc. _ Confidential mV LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.2.2  Peak Voltage Calculation Method The peak voltage of Differential Clock signals are calculated in a following equation. fid en tia l VIH.DIFF.Peak Voltage = Max(f(t)) VIL.DIFF.Peak Voltage = Min(f(t)) f(t) = VCK_t - VCK_c Single Ended Input Voltage C on CK_t an d VrefCA Max (f(t)) ge d Min (f(t)) ile CK_c Time Pr Note: iv Figure 5-13  Definition of Differential Clock Peak Voltage VREFCA is LPDDR4X SDRAM internal setting value by VREF Training. XM T 5.3  Single-Ended Input Voltage for Clock The minimum input voltage need to satisfy both Vinse_CK, Vinse_CK_High/Low specification at C input receiver. 30 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 l Vinse_CK_High on CK_c Vinse_CK_Low fid en tia Vinse_CK Vinse_CK_High Vinse_CK_Low Vinse_CK Single Ended Input Voltage: DQS_t and DQS_c CK_t C Time Figure 5-14  Clock Single-Ended Input Voltage an d Note: VREFCA is LPDDR4X SDRAM internal setting value by VREF Training. ge d Table 5-18  Clock Single-Ended Input Voltage Parameter Symbol Data Rate 1600/1867 Max 2133/2400/3200 Min ile Min a Max 3733 Min Unit Max C XM T Pr iv Clock Single-Ended input voltage Vinse_CK 210 190 180 mV Clock Single-Ended input voltage Vinse_CK_High 105 95 90 mV High from VREFDQ Clock Single-Ended input voltage Vinse_CK_Low 105 95 90 mV Low from VREFDQ a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. 31 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.3.2.1  Differential Input Slew Rate Definition for Clock Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Figure fid en tia Differential Input Voltage: f(t)DQS_t-DQS_c l 1-15 and the following Tables. Peak Voltage VIHDiff_CK on 0.0 an d C VILDiff_CK Delta TFdiff Peak Voltage Delta TRdiff Time ge d Figure 5-15  Differential Input Slew Rate Definition for CK_t, CK_c Note: 1  Differential signal rising edge from VILdiff_CK to VIHdiff_CK must be monotonic slope. ile 2  Differential signal falling edge from VIHdiff_CK to VILdiff_CK must be monotonic slope. iv Table 5-19  Differential Input Slew Rate Definition for CK_t, CK_c From To Defined by VILdiff_CK VIHdiff_CK |VILdiff_CK - VIHdiff_CK|/DeltaTRdiff VIHdiff_CK VILdiff_CK |VILdiff_CK - VIHdiff_CK|/DeltaTFdiff XM T Pr Description Differential input slew rate for rising edge(CK_t - CK_c) Differential input slew rate for falling edge(CK_t - CK_c) Table 5-20  Differential Input Level for CK_t, CK_c C Parameter Symbol 1600/1867 Data Rate 2133/2400/3200 a 3733 Unit Min Max Min Max Min Max Differential Input High VIHdiff_CK 175 155 145 mV Differential Input Low VILdiff_CK -175 -155 -145 mV a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. 32 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 5-21  Differential Input Slew Rate for CK_t, CK_c Data Rate Parameter Symbol 1600/1867a Min Max 2133/2400/3200 Min Max Unit 3733 Min Max 5.3.2.2  Differential Input Cross Point Voltage fid en tia l Differential Input Slew Rate for Clock SRIdiff_CK 2 14 2 14 2 14 V/ns a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. The cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 1-22. The differential input cross point voltage VIX is measured from the actual cross point C on of true and complement signals to the mid level that is VREFCA. an d CK_t Vix_CK_FR ge d VrefCA Min(f(t)) Vix_CK_FR ile CK_c Vix_CK_RF VSS Pr Time Figure 5-16  Vix Definition (Clock) XM T Note: Vix_CK_RF Max(f(t)) iv Single Ended Input Voltage VDD The base level of Vix_CK_FR/RF is VREFCA that is LPDDR4X SDRAM internal setting value by VREF Training. C Table 5-22  Cross Point Voltage for Differential Input Signals (Clock) Parameter Data Rate Symbol 1600/1867a Min Max 2133/2400/3200 Min Max 3733 Min Unit Max Clock Differential input cross Vix_CK_ratio 25 25 25 % point voltage ratio1,2 a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. 33 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  Vix_CK_Ratio is defined by this equation: Vix_CK_Ratio = Vix_CK_FR/|Min(f(t))| C XM T Pr iv ile ge d an d C on fid en tia l 2  Vix_CK_Ratio is defined by this equation: Vix_CK_Ratio = Vix_CK_RF/Max(f(t)) 34 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.3.2.3  Differential Input Voltage for DQS The minimum input voltage need to satisfy both Vindiff_DQS and Vindiff_DQS/2 specification at input receiver and their measurement period is 1UI(tCK/2). Vindiff_DQS is the peak to peak fid en tia Time C XM T Pr iv ile ge d Figure 5-17  DQS Differential Input Voltage 35 ChangXin Memory Technologies, Inc. _ Confidential Vindiff_DQS C 0.0 Vindiff_DQS/2 on Vindiff_DQS/2 Peak Voltage an d Differential Input Voltage: DQS_t, DQS_c l voltage centered on 0 volts differential and Vindiff_DQS /2 is max and min peak voltage from 0V. Peak Voltage LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 5-23  DQS Differential Input Voltage Data Rate Parameter Symbol 1600/1867a 2133/2400/3200 3733 Unit Min Max Min Max Min Max DQS differential input Vindiff_DQS 360 360 340 mV a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. fid en tia l 1 Note: 1  The peak voltage of Differential DQS signals is calculated in a following equation. • Vindiff_DQS = (Max Peak Voltage) - (Min Peak Voltage) • Max Peak Voltage = Max(f(t)) on • Min Peak Voltage = Min(f(t)) • f(t) = VDQS_t - VDQS_c C 5.3.2.4  Peak Voltage Calculation Method • VIH.DIFF.Peak Voltage = Max(f(t)) ge d • VIL.DIFF.Peak Voltage = Min(f(t)) an d The peak voltage of Differential DQS signals are calculated in a following equation. • f(t) = VDQS_t - VDQS_c iv VrefDQ C XM T Pr Single Ended Input Voltage ile DQS_t Min (f(t)) Max (f(t)) DQS_c Time Figure 5-18  Definition of Differential DQS Peak Voltage Note: VrefDQ is LPDDR4X SDRAM internal setting value by Vref Training. 36 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.3.2.5  Single-Ended Input Voltage for DQS The minimum input voltage need to satisfy both Vinse_DQS, Vinse_DQS_High/Low specification l at input receiver. Vinse_DQS_High fid en tia Vinse_DQS_Low Vinse_DQS on C an d CK_c Vinse_DQS_High VrefDQ Vinse_DQS_Low Vinse_DQS Single Ended Input Voltage: DQS_t and DQS_c CK_t Time Figure 5-19  DQS Single-Ended Input Voltage ge d Note: VrefDQ is LPDDR4X SDRAM internal setting value by Vref Training. Symbol iv Parameter ile Table 5-24  DQS Single-Ended Input Voltage Data Rate 1600/1867a Min Max 2133/2400/3200 Min Max 3733 Min Unit Max C XM T Pr DQS differential input Vindiff_DQS 180 180 170 mV DQS Single-Ended input 90 90 85 mV Vinse_DQS_High voltage High from VREFDQ DQS Single-Ended input 90 90 85 mV Vinse_DQS_Low voltage Low from VREFDQ a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. 37 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.3.2.6  Differential Input Slew Rate Definition for DQS Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in l fid en tia Peak Voltage VIHDiff_DQS on 0.0 Delta TFdiff C VILDiff_DQS Peak Voltage Delta TRdiff an d Differential Input Voltage: f(t)DQS_t-DQS_c Figure 1-20 and Table 1-25. Time Figure 5-20  Differential Input Slew Rate Definition for DQS_t, DQS_c ge d Note: 1  Differential signal rising edge from VILdiff_DQS to VIHdiff_DQS must be monotonic slope. ile 2  Differential signal falling edge from VIHdiff_DQS to VILdiff_DQS must be monotonic slope. Table 5-25  Differential Input Slew Rate Definition for DQS_t, DQS_c To Defined by Differential input slew rate for rising edge(DQS_t - DQS_c) VIHdiff_DQS VIHdiff_DQS |VILdiff_DQS - VIHdiff_DQS|/DeltaTRdiff Differential input slew rate for falling edge(DQS_t - DQS_c) VIHdiff_DQS VIHdiff_DQS |VILdiff_DQS - VIHdiff_DQS|/DeltaTFdiff iv From C XM T Pr Description 38 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 5-26  Differential Input Level for DQS_t, DQS_c Parameter 1600/1867 Symbol Data Rate 2133/2400/3200 a 3733 Unit Table 5-27  Differential Input Slew Rate for DQS_t, DQS_c Data Rate 1600/1867 Symbol SRIdiff Min Max Min 2 14 2 Max 14 C XM T Pr iv ile ge d an d C Differential Input Slew Rate 2133/2400/3200 3733 Min on Parameter a fid en tia l Min Max Min Max Min Max Differential Input High VIHdiff_DQS 140 140 120 mV Differential Input Low VILdiff_DQS -140 -140 -120 mV a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. 39 ChangXin Memory Technologies, Inc. _ Confidential 2 Unit Max 14 V/ns LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.3.2.7  Differential Input Cross Point Voltage The cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements l in Table 1-28. fid en tia The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the mid level that is VREFDQ. on DQS_t Vix_DQS_RF Vix_DQS_FR C Max(f(t)) VrefDQ an d Min(f(t)) DQS_c VSSQ Vix_DQS_RF Vix_DQS_FR ge d Single Ended Input Voltage VDDQ Time Figure 5-21  Vix Definition (DQS) ile Note: C XM T Pr iv The base level of Vix_DQS_FR/RF is VrefDQ that is LPDDR4X SDRAM internal setting value by Vref Training. 40 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 5-28  Cross Point Voltage for Differential Input Signals (DQS) Data Rate Parameter 1600/1867 Symbol Min a Max 2133/2400/3200 Min 3733 Max Min Unit Max fid en tia l DQS Differential input cross Vix_DQS_ratio 20 20 20 % point voltage ratio1,2 a. The following requirements apply for DQ operating frequencies at or below 1333Gbps for all speed bins for the first column 1600/1867. Note: 1  Vix_DQS_Ratio is defined by this equation: Vix_DQS_Ratio = Vix_DQS_FR/|Min(f(t))|. 5.4  AC/DC Input level for ODT Input Symbol Min Max Unit 0.75*VDD -0.2 0.65*VDD -0.2 VDD+0.2 0.25*VDD VDD+0.2 0.35*VDD V V V V an d Parameter C Table 5-29  Input Level for ODT on 2  Vix_DQS_Ratio is defined by this equation: Vix_DQS_Ratio = Vix_DQS_RF/Max(f(t)) 1 VIHODT(AC) VILODT(AC) VIHODT(DC) VILODT(DC) ODT Input High Level (AC) ODT Input Low Level (AC)1 ODT Input High Level (DC) ODT Input Low Level (DC) ge d Note: C XM T Pr iv ile See Overshoot and Undershoot Specifications 41 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.5  Overshoot and Undershoot for LVSTL Table 5-30  AC Overshoot/Undershoot Specification Maximum peak amplitude allowed for overshoot area. See Figure 1-22 Maximum peak amplitude allowed for undershoot area. See Figure 1-22 Maximum area above VDD /VDDQ. See Figure 1-22 Maximum area below VSS. See Figure 1-22 Max Max Max Max 0.3 V 0.3 V 0.1 V/ns 0.1 V/ns on Note: Unit 1600/1866/3200 l Data Rate Min/Max fid en tia Parameter C 1  VDD2 stands for VDD for CA[5:0], CK_t, CK_c, CS_n, CKE and ODT. VDD stands for VDDQ for DQ, DMI,DQS_t and DQS_c. an d 2  VSS stands for VSS for CA[5:0], CK_t, CK_c, CS_n, CKE and ODT. VSS stands for VSSQ for DQ, DMI, DQS_t and DQS_c. 3  Maximum peak amplitude values are referenced from actual VDD and VSS values. ge d 4  Maximum area values are referenced from maximum operating VDD and VSS values. Overshoot Area Maximum Amplitude VDD ile Volts(V) VSS iv Maximum Amplitude Pr Time(ns) Undershoot Area XM T Figure 5-22  Overshoot and Undershoot Definition 5.6  Driver Output Timing Reference Load C These ‘Timing Reference Loads’ are not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. 42 ChangXin Memory Technologies, Inc. _ Confidential fid en tia l LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Figure 5-23  Driver Output Reference Load for Timing and Slew Rate Note: on All output timing parameter values are reported with respect to this reference load. This reference load is also used to C XM T Pr iv ile ge d an d C report slew rate. 43 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 5.7  LVSTL(Low Voltage Swing Terminated Logic) IO System LVSTL I/O cell is comprised of pull-up, pull-down driver and a terminator. The basic cell is shown C on fid en tia l in Figure 1-24. an d Figure 5-24  LVSTL I/O Cell To ensure that the target impedance is achieved the LVSTL I/O cell is designed to calibrated as ge d below procedure. First calibrate the pull-down device against a 240 Ω resister to VDDQ via the ZQ pin. ile • Set Strength Control to minimum setting. iv • Increase drive strength until comparator detects data bit is less than VDDQ/2. C XM T Pr • NMOS pull-down device is calibrated to 240 Ω. Figure 5-25  Pull-down Calibration 44 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Then calibrate the pull-up device against the calibrated pull-down device. • Set VOH target and NMOS controller ODT replica via MRS (VOH can be automatically controlled by ODT MRS). fid en tia • Increase drive strength until comparator detects data bit is greater than VOH target. l • Set Strength Control to minimum setting. ge d an d C on • NMOS pull-up device is now calibrated to VOH target. C XM T Pr iv ile Figure 5-26  Pull-up Calibration 45 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 6. Input/Output Capacitance Table 6-31  Input/output Capacitance Input capacitance delta, CK_t and CK_c CDCK Input capacitance, all other input-only pins CI Input capacitance delta, all other input-only pins CDI Input/output capacitance, DQ, DMI, DQS_t, DQS_c CIO CDDQS Input/output capacitance delta, DQ, DMI CDIO Input/output capacitance, ZQ pin CZQ an d Input/output capacitance delta, DQS_t, DQS_c Note: Unit Note l CCK 3733 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD pF 1,2 pF 1,2,3 pF 1,2,4 pF 1,2,5 pF 1,2,6 pF 1,2,7 pF 1,2,8 pF 1,2 fid en tia Input capacitance, CK_t and CK_c Min/Max 3200 - 533 Min 0.5 Max 0.9 Min 0.0 Max 0.09 Min 0.5 Max 0.9 Min -0.1 Max 0.1 Min 0.7 Max 1.3 Min 0.0 Max 0.1 Min -0.1 Max 0.1 Min 0.0 Max 5.0 on Symbol C Parameter ge d 1  This parameter applies to die device only (does not include package capacitance). 2  This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSSQ applied and all other pins floating. ile 3  Absolute value of CCK_t . CCK_c. iv 4  CI applies to CS_n, CKE, CA0~CA5. Pr 5  CDI = CI . 0.5 * (CCK_t + CCK_c). 6  DMI loading matches DQ and DQS. XM T 7  Absolute value of CDQS_t and CDQS_c. C 8  CDIO = CIO . 0.5 * (CDQS_t + CDQS_c) in byte-lane. 46 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 7. IDD Test Conditions and Specifications In this chapter, IDD measurement conditions including CA patterns and DQ patterns are defined. fid en tia l The key performance indicator IDD values are indtroduced in the second section of this chapter. • IDD Measurement Conditions on Page 48 C XM T Pr iv ile ge d an d C on • IDD Specifications on Page 54 47 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 7.1  IDD Measurement Conditions The following definitions are used within the IDD measurement tables unless stated otherwise: fid en tia l LOW: VIN ≤ VIL(DC) MAX HIGH: VIN ≥ VIH(DC) MIN STABLE: Inputs are stable at a HIGH or LOW level Table 7-32  Definition of Switching for CA Input Signals Switching for CA R3 R4 HIGH HIGH LOW LOW LOW LOW HIGH LOW LOW LOW HIGH LOW LOW LOW HIGH LOW C R2 HIGH LOW LOW HIGH LOW HIGH LOW HIGH R6 HIGH LOW HIGH LOW HIGH LOW HIGH LOW R7 HIGH LOW HIGH LOW HIGH LOW HIGH LOW R8 HIGH LOW HIGH HIGH HIGH HIGH HIGH HIGH ile Note: R5 HIGH LOW LOW LOW LOW LOW LOW LOW an d R1 HIGH LOW HIGH HIGH HIGH HIGH HIGH HIGH ge d CK_t Edge CKE CS CA0 CA1 CA2 CA3 CA4 CA5 on SWITCHING: See Table 7-32 and Table 7-33. 1  CS must always be driven LOW. iv 2  50% of CAbus is changing between HIGH and LOW once per clock for the CA bus. C XM T Pr 3  The pattern is used continuously during IDD measurement for IDD values that require switching on the CA bus. 48 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 7-33  CA Pattern for IDD4R HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH LOW HIGH LOW LOW LOW LOW LOW HIGH LOW HIGH LOW LOW LOW LOW LOW Read-1 CAS-2 DES DES DES DES Read-1 CAS-2 DES DES DES DES CA0 CA1 CA2 CA3 CA4 CA5 L L L L L L L L L L L H L L L L H H H L L L L L L L H H L L L L L L L L L L L L L L L H L L L L L L L L L L L L L L L H L L L L L L H L L L L L L L H H L L L L L L L L L L L L L L H H L L L L l N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 N+12 N+13 N+14 N+15 Command fid en tia CS on CKE C Clock Cycle Number an d Note: 1  BA[2:0] = 010, CA[9:4] = 000000 or 111111, Burst Order CA[3:2] = 00 or 11 (Same as LPDDR3 IDD4R). 2  Difference from LPDDR3 (JESD209-3): CA pins are kept low with DES CMD to reduce ODT current. iv XM T C CS HIGH LOW HIGH LOW LOW LOW LOW LOW HIGH LOW HIGH LOW LOW LOW LOW LOW ile CKE HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH Pr Clock Cycle Number N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 N+12 N+13 N+14 N+15 ge d Table 7-34  CA Pattern for IDD4W Command Write-1 CAS-2 DES DES DES DES Write-1 CAS-2 DES DES DES DES CA0 L L L L L L L L L L L L L L L L CA1 L H H L L L L L L H H L L L L L CA2 H L L L L L L L H L L H L L L L CA3 L L L L L L L L L L L H L L L L CA4 L L H L L L L L L H H H L L L L CA5 L L L L L L L L L L H H L L L L Note: 1  BA[2:0] = 010, CA[9:4] = 000000 or 111111 (Same as LPDDR3 IDD4W). 2  Difference from LPDDR3 (JESD209-3): 1)-No burst ordering, and 2) CA pins are kept low with DES CMD to reduce ODT current. 49 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 7-35  Data Pattern for IDD4W (DBI off) DQ[5] DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] DBI 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 16 16 16 on C an d ge d ile iv Pr 16 16 No. of 1’s 8 4 0 4 2 4 6 4 8 4 0 4 2 4 6 4 6 4 2 4 0 4 8 4 2 4 6 4 8 4 0 4 fid en tia DQ[6] 16 XM T BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10 BL11 BL12 BL13 BL14 BL15 BL16 BL17 BL18 BL19 BL20 BL21 BL22 BL23 BL24 BL25 BL26 BL27 BL28 BL29 BL30 BL31 No. of 1’s DQ[7] l DBI OFF Case Note: Simplified pattern compared predecessor. Same data pattern was applied to DQ[4], DQ[5], DQ[6], DQ[7] for reducing C complexity for IDD4W/R pattern programming. 50 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 7-36  Data Pattern for IDD4R (DBI off) DQ[5] DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] DBI No. of 1’s BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10 BL11 BL12 BL13 BL14 BL15 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 4 0 4 2 4 6 4 8 4 0 4 2 4 6 4 BL16 BL17 BL18 BL19 BL20 BL21 BL22 BL23 BL24 BL25 BL26 BL27 BL28 BL29 BL30 BL31 No. of 1’s 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 01 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 16 16 16 16 16 ile iv Pr XM T 16 16 C on fid en tia l DQ[6] ge d DQ[7] an d DBI OFF Case 8 4 0 4 6 4 2 4 0 4 8 4 2 4 6 4 Note: C Same data pattern was applied to DQ[4], DQ[5], DQ[6], DQ[7] for reducing complexity for IDD4W/R pattern programming 51 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 7-37  Data Pattern for IDD4W (DBI On) DQ[5] DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] DBI 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 8 8 16 16 8 8 8 on C an d ge d ile iv Pr 8 8 Note: C DBI enabled burst 52 ChangXin Memory Technologies, Inc. _ Confidential No. of 1’s 1 4 0 4 2 4 3 4 1 4 0 4 2 4 3 4 1 4 0 4 3 4 2 4 2 4 1 4 2 4 3 4 fid en tia DQ[6] XM T BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10 BL11 BL12 BL13 BL14 BL15 BL16 BL17 BL18 BL19 BL20 BL21 BL22 BL23 BL24 BL25 BL26 BL27 BL28 BL29 BL30 BL31 No. of 1’s DQ[7] l DBI ON Case LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 7-38  Data Pattern for IDD4R (DBI On) DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] DBI BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10 BL11 BL12 BL13 BL14 BL15 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 BL16 BL17 BL18 BL19 BL20 BL21 BL22 BL23 BL24 BL25 BL26 BL27 BL28 BL29 BL30 BL31 No. of 1’s 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 8 8 8 8 16 16 8 ile iv Pr 8 on C C XM T 8 53 ChangXin Memory Technologies, Inc. _ Confidential No. of 1’s 1 4 0 4 2 4 3 4 1 4 0 4 2 4 3 4 l DQ[5] fid en tia DQ[6] ge d DQ[7] an d DBI ON Case 1 4 0 4 3 4 2 4 2 4 1 4 2 4 3 4 LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 7.2  IDD Specifications IDD values are for the entire operating voltage range, and all of them are for the entire standard C XM T Pr iv ile ge d an d C on fid en tia l range, with the exception of IDD6ET which is for the entire elevated temperature range. 54 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 7-39  IDD Specification Parameters and Operating Conditions Idle power-down standby current with clock stop:CK_t =LOW, CK_c =HIGH;CKE is LOW;CS is LOW;All banks are idle;CA bus inputs are stable;Data bus inputs are stable,ODT disabled VDD1 IDD02 VDD2 IDD0Q VDDQ IDD2P1 IDD2P2 IDD2PQ IDD2PS1 IDD2PS2 IDD2PSQ IDD2N1 IDD2N2 IDD2NQ IDD2NS1 IDD2NS2 IDD2NSQ IDD3P1 IDD3P2 IDD3PQ IDD3PS1 IDD3PS2 IDD3PSQ IDD3N1 IDD3N2 IDD3NQ IDD3NS1 IDD3NS2 VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 an d Active power-down standby current:tCK = tCKmin;CKE is LOW;CS is LOW;One bank is active;CA bus inputs are switching;Data bus inputs are stable, ODT disabled Active power-down standby current with clock stop:CK_t=LOW, CK_ c=HIGH;CKE is LOW;CS is LOW;One bank is active;CA bus inputs are stable;Data bus inputs are stable,ODT disabled Pr iv ile ge d Active non-power-down standby current:tCK = tCKmin;CKE is HIGH;CS is LOW;One bank is active;CA bus inputs are switching; Data bus inputs are stable,ODT disabled Active non-power-down standby current with clock stopped:CK_t=LOW, CK_c=HIGH;CKE is HIGH;CS is LOW; One bank is active;CA bus inputs are stable;Data bus inputs are stable,ODT disabled Operating burst READ current:tCK = tCKmin;CS is LOW between valid commands;One bank is active;BL = 16 or 32; RL = RL(MIN);CA bus inputs are switching;50% data change each burst transfer ODT disabled IDD3NSQ VDDQ IDD4R1 IDD4R2 IDD4RQ IDD4W1 IDD4W2 IDD4WQ IDD51 IDD52 IDD5Q IDD5AB1 IDD5AB2 IDD5ABQ IDD5PB1 IDD5PB2 IDD5PBQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ VDD1 VDD2 VDDQ XM T Operating burst WRITE current:tCK = tCKmin;CS is LOW between valid commands;One bank is active;BL = 16 or 32; WL = WLmin;CA bus inputs are switching;50% data change each burst transfer ODT disabled All bank REFRESH Burst current:tCK = tCKmin;CKE is HIGH between valid commands;tRC = tRFCabmin;Burst refresh;CA bus inputs are switching;Data bus inputs are stable;ODT disabled C All bank REFRESH Average current:tCK = tCKmin;CKE is HIGH between valid commands;tRC = tREFI;CA bus inputs are switching;Data bus inputs are stable;ODT disabled Per bank REFRESH Average current:tCK = tCKmin; CKE is HIGH between valid commands;tRC = tREFI/8;CA bus inputs are switching;Data bus inputs are stable;ODT disabled Note 3 l IDD01 C Idle non power-down standby current with clock stopped:CK_t=LOW; CK_c=HIGH;CKE is HIGH;CS is LOW;All banks are idle;CA bus inputs are stable;Data bus inputs are stable, ODT disabled Power Supply on Idle non power-down standby current:tCK = tCKmin;CKE is HIGH; CS is LOW;All banks are idle;CA bus inputs are switching;Data bus inputs are stable,ODT disabled Symbol fid en tia Parameter/Condition Operating one bank active-precharge current: tCK = tCKmin; tRC = tRCmin;CKE is HIGH; CS is LOW between valid commands; CA bus inputs are switching; Data bus inputs are stable ,ODT disabled Idle power-down standby current: tCK = tCKmin;CKE is LOW;CS is LOW;All banks are idle;CA bus inputs are switching;Data bus inputs are stable,ODT disabled 55 ChangXin Memory Technologies, Inc. _ Confidential 3 3 3 3 3 4 4 4 5 4 4 4 4 LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: Power Supply Note VDD1 6,7,8,10 VDD2 6,7,8,10 VDDQ 4,6,7,8,10 VDD1 7,8,11 VDD2 7,8,11 VDDQ 4,7,8,11 l Symbol IDD61 IDD62 IDD6Q IDD6ET1 IDD6ET2 IDD6ETQ fid en tia Parameter/Condition Power Down Self Refresh current (-25 ° C to +85 ° C):CK_t=LOW, CK_ c=HIGH;CKE is LOW;CA bus inputs are stable;Data bus inputs are stable;Maximum 1x Self Refresh Rate;ODT disabled Power Down Self Refresh current (+85 ° C to +105 ° C): CK_t=LOW, CK_c=HIGH;CKE is LOW;CA bus inputs are stable; Data bus inputs are stable;Maximum 1x Self Refresh Rate;ODT disabled 1  DBI Published IDD values are the maximum of the distribution of the arithmetic mean. 2  ODT disabled: MR11[2:0] = 000B. 3  IDD current specifications are tested after the device is properly initialized. 5  Guaranteed by design with output load = 5pF and RON = 40 Ω. on 4  Measured currents are the summation of VDDQ and VDD2. C 6  The 1x Self Refresh Rate is the rate at which the LPDDR4 device is refreshed internally during Self Refresh, before going into the elevated Temperature range. an d 7  This is the general definition that applies to full array Self Refresh. 8  Supplier datasheets may contain additional Self Refresh IDD values for temperature subranges within the Standard or elevated Temperature Ranges. ge d 9  For all IDD measurements, VIHCKE = 0.8 x VDD2, VILCKE = 0.2 x VDD2. 10  IDD6 85 °C is guaranteed, IDD6 45 °C is typical of the distribution of the arithmetic mean. 11  IDD6ET is a typical value, is sampled only, and is not tested. C XM T Pr iv ile 12  Dual Channel devices are specified in dual channel operation (both channels operating together). 56 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 7.3  LPDDR4X IDD Parameters - Single Die VDD2 = 1.06 ~ 1.17V, VDDQ = 0.57 ~ 0.65V; VDD1 = 1.70 ~ 1.95V; TC = –25°C ~ +85°C 3733 Mbps IDD01 VDD1 9 IDD02 VDD2 75 VDDQ 0.3 VDD1 1.6 IDD2P2 VDD2 5 IDD2PQ VDDQ 0.1 IDD2PS1 VDD1 1.6 IDD2PS2 VDD2 5 IDD2PSQ VDDQ 0.1 IDD2N1 VDD1 1.6 IDD2N2 VDD2 IDD2NQ VDDQ IDD2NS1 VDD1 IDD2NS2 VDD2 IDD2NSQ VDDQ IDD3P1 VDD1 2 VDD2 7.5 VDDQ 0.1 VDD1 2 VDD2 7.5 VDDQ 0.1 VDD1 2.8 IDD3N2 VDD2 40 IDD3NQ VDDQ 0.1 IDD3NS1 VDD1 3 IDD3NS2 VDD2 30 IDD3NSQ VDDQ 0.1 IDD4W1 VDD1 3.2 IDD4W2 VDD2 260 IDD4WQ VDDQ 0.3 IDD4R1 VDD1 5.5 IDD4R2 VDD2 340 IDD4RQ VDDQ 80 IDD3PQ C XM T Pr IDD3N1 iv IDD3PS2 mA mA C mA an d 0.1 1.6 20 mA 0.1 ile IDD3PS1 IDD3PSQ 30 ge d IDD3P2 mA on IDD0Q IDD2P1 Unit 57 ChangXin Memory Technologies, Inc. _ Confidential Note l Supply fid en tia Symbol mA mA mA mA mA mA LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 3733 Mbps IDD51 VDD1 18 IDD52 VDD2 150 IDD5Q VDDQ 0.1 IDD5AB1 VDD1 3 IDD5AB2 VDD2 35 IDD5ABQ VDDQ 0.1 IDD5PB1 VDD1 3 IDD5PB2 VDD2 35 IDD5PBQ VDDQ 0.1 C an d ge d ile iv Pr XM T C 58 ChangXin Memory Technologies, Inc. _ Confidential Note mA mA mA on Note: Unit l Supply fid en tia Symbol LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 7.4  LPDDR4X IDD6 Parameters - Single Die VDD2 = 1.06 ~ 1.17V, VDDQ = 0.57 ~ 0.65V; VDD1 = 1.70 ~ 1.95V; TC = –25°C ~ +85°C Supply VDD1 Full-Array Self Refresh Current 0.4 Unit 25°C IDD62 VDD2 3.8 mA IDD6Q VDDQ 0.1 IDD61 VDD1 2.5 IDD62 VDD2 10 IDD6Q VDDQ 0.1 85°C Note l Symbol IDD61 fid en tia Temperature mA C XM T Pr iv ile ge d an d C on Note: 59 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 8. Electrical Characteristics and AC Timing 8.1  Clock Specification min/max values may result in malfunction of the LPDDR4X device. 8.1.1  Definition for tCK(avg) and nCK fid en tia l The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the on tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, N tCKj /N N=200 an d tCK(avg)= C where each clock period is calculated from rising edge to rising edge. j=1 Unit ‘tCK(avg)’ represents the actual clock average tCK(avg) of the input clock under operation. ge d Unit ‘nCK’ represents one clock cycle of the input clock, counting the actual clock edges. timing specs are met. ile tCK(avg) may change by up to +/-1% within a 100 clock cycle window, provided that all jitter and iv 8.1.2  Definition for tCK(abs) Pr tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next XM T consecutive rising edge. tCK(abs) is not subject to production test. C 8.1.2.1  Definition for tCH(avg) and tCL(avg) tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses. 60 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 N tCH(avg)= / N x tCK(avg) tCHj N=200 j=1 low pulses. N tCL(avg)= / N x tCK(avg) tCLj N=200 on j=1 fid en tia l tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 C 8.1.2.2  Definition for tCH(abs) and tCL(abs) an d tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. ge d tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. ile Both tCH(abs) and tCL(abs) are not subject to production test. iv 8.1.2.3  Definition for tJIT(per) XM T tCK(avg). Pr tJIT(per) is the single period jitter defined as the largest deviation of any signal tCK from tJIT(per) = Min/max of {tCKi - tCK(avg) where i = 1 to 200}. C tJIT(per),act is the actual clock jitter for a given system. tJIT(per),allowed is the specified allowed clock period jitter. tJIT(per) is not subject to production test. 61 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 8.1.2.4  Definition for tJIT(cc) tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock l cycles. fid en tia tJIT(cc) = Max of |{tCK(i +1) - tCK(i)}|. tJIT(cc) defines the cycle to cycle jitter. tJIT(cc) is not subject to production test. on 8.2  Clock Timing Symbol Clock Timing Average High pulse width Average Low pulse width Absolute clock period Absolute High clock pulse width Absolute Low clock pulse width 0.46 0.46 tCK(avg)MIN +tJIT(per)MIN 0.54 0.54 - tCK(avg) tCK(avg) ns tCH(abs) 0.43 0.57 tCK(avg) tCL(abs) 0.43 0.57 tCK(avg) ile Parameter Symbol Pr iv Clock Timing Average clock period Clock period jitter Maximum Clock Jitter between consecutive cycles Unit Max ge d tCH(avg) tCL(avg) tCK(abs) 1600/2400/3200 Min an d Parameter C Table 8-40  Clock AC Timings 1600 Min Max 2400 Min Max Min 3200 Max Unit tCK(avg) tJIT(per) 1.25 -70 100 70 0.833 -50 100 50 0.625 -40 100 40 ps ps tJIT(cc) - 140 - 100 - 80 ps XM T 8.3  Temperature Derating for AC Timing Table 8-41  Temperature Derating AC Timing Symbol Min/Max Temperature Derating1 DQS output access time from CK_t/CK_c (derated) RAS-to-CAS delay (derated) tDQSCK tRCD Min Min 3600 tRCD + 1.875 C Parameter Data Rate 533/1066/1600/2133/ 2667/3200/3733 62 ChangXin Memory Technologies, Inc. _ Confidential Unit ps ns LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Symbol Min/Max tRC Min tRC + 3.75 ns tRAS tRP tRRD Min Min Min tRAS + 1.875 tRP + 1.875 tRRD + 1.875 ns ns ns l ACTIVATE-to- ACTIVATE command period (derated) Row active time (derated) Row precharge time (derated) Active bank A to active bank B (derated) Unit fid en tia Parameter Data Rate 533/1066/1600/2133/ 2667/3200/3733 Note: Timing derating applies for operation at 85 °C to 105 °C. on 8.4  CA Rx Voltage and Timing The command and address(CA) including CS input receiver compliance mask for voltage and C timing is shown in Figure 1-27. All CA, CS signals apply the same compliance mask and operate an d in single data rate mode. The CA input receiver mask for voltage and timing is shown in Figure 1-28. The receiver mask (Rx Mask) defines the area that the input signal must not encroach in order for the DRAM input ge d receiver to be expected to be able to successfully capture a valid input signal; it is not the valid data-eye. C Rx Mask Vcent_CA (pin mid) Figure 8-27  CA Receiver(Rx) Mask 63 ChangXin Memory Technologies, Inc. _ Confidential VcIVW XM T Pr iv ile TcIVW_total LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 CAy Vcent_CAx CAz Vcent_CAz Vcent_CAy fid en tia Vref variation (component) l CAx Figure 8-28  Across Pin VREFCA Voltage Variation on Vcent_CA(pin mid) is defined as the midpoint between the largest Vcent_CA voltage level and C the smallest Vcent_CA voltage level across all CA and CS pins for a given DRAM component. Each CA Vcent level is defined by the center, i.e., widest opening, of the cumulative data input an d eye as depicted in Figure 1-28. This clarifies that any DRAM component level variation must be accounted for within the DRAM CA Rx mask. The component level VREF will be set by the system to account for Ron and ODT settings. iv ile DQS_t ge d CK_t, CK_c Data-in at DRAM Ball Maximum CA Eye center aligned C CA Rx Mask DRAM Pin VcIVW XM T Pr DQS_c TcIVW TcIVW for all CA signals is defined as centered on the CK_t/CK_c crossing at DRAM pin Figure 8-29  CA Timings at the DRAM Pins All of the timing terms in Figure 1-29 are measured from the CK_t/CK_c to the center(midpoint) of the TcIVW window taken at the VcIVW_total voltage levels centered around Vcent_CA(pin mid). 64 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 tf tr fid en tia l VcIVW Vcent_CA (pin mid) TcIPW Figure 8-30  CA TcIPW and SRIN_cIVW definition (for each input pulse) on Note: Vcent_CA Rx Mask Rx Mask ge d Rx Mask an d C SRIN_cIVW=VcIVW_Total/(tr or tf), signal must be monotonic within tr and tf range. VcIVW VIHL_AC(min)/2 VIHL_AC(min)/2 ile Figure 8-31  CA VIHL_AC Definition (for Each Input Pulse) iv Table 8-42  DRAM CMD/ADR, CS * UI=tck(avg)min Pr DQDQ-3200 1333a/1600/1867 Unit Note Min Max Min Max VcIVW Rx Mask voltage - p-p 175 155 mV 1,2,3 TcIVW Rx timing window 0.3 0.3 UI VIHL_AC CA AC input pulse amplitude pk-pk 210 190 mV 4,7 TcIPW CA input pulse width 0.55 0.6 UI 5 SRIN_cIVW Input Slew Rate over VcIVW 1 7 1 7 V/ns 6 a. The following Rx voltage and absolute timing requirements apply for DQ operating frequencies at or below 1333 for all speed bins. For example the TcIVW(ps) = 450ps at or below 1333 operating frequencies. Parameter C XM T Symbol 65 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  CA Rx mask voltage and timing parameters at the pin including voltage and temperature drift. 2  Rx mask voltage VcIVW total(max) must be centered around Vcent_CA(pin mid). 3  Vcent_CA must be within the adjustment range of the CA internal Vref. 5  CA only minimum input pulse width defined at the Vcent_CA(pin mid). 6  Input slew rate over VcIVW Mask centered at Vcent_CA(pin mid). C XM T Pr iv ile ge d an d C on 7  VIHL_AC does not have to be met when no transitions are occurring. fid en tia l 4  CA only input pulse signal amplitude into the receiver must meet or exceed VIHL AC at any point over the total UI. No timing requirement above level. VIHL AC is the peak to peak voltage centered around Vcent_CA(pin mid) such that VIHL_AC/2 min must be met both above and below Vcent_CA. 66 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 8.5  DRAM Data Timing tQSH(DQS_t) tQSL(DQS_t) DQS_t fid en tia l DQS_c tQH tDQSQ C on Associated DQ Pins ge d DQS_t/DQS_c an d Figure 8-32  Read Data Timing Definitions tQH and tDQSQ across all DQ Signals per DQS Group tQW iv ile DQx DQy C XM T Pr tQW DQz tQW Figure 8-33  Read Data Timing tQW Valid Window Defined per DQ Signal 67 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 8-43  Read Output Timings Unit UI = tCK(avg)min/2 Symbol DQ-1600/1867 Min Max Parameter DQ-2133/2400 Min Max DQ-3200 Min Max Unit Note C XM T Pr iv ile ge d an d C on fid en tia l Data Timing DQS_t,DQS_c to DQ tDQSQ Skew total, per group, 0.18 0.18 0.18 UI per access (DBIDisabled) DQ output hold time min(tQSH, min(tQSH, min(tQSH, tQH total from DQS_t, DQS_c UI tQSL) tQSL) tQSL) (DBI-Disabled) DQ output window time tQW_tototal, per pin (DBI-Dis0.75 0.73 0.7 UI 3 tal abled) DQ output window time tQW_dj deterministic, per pin TBD TBD TBD UI 2,3 (DBIDisabled) DQS_t,DQS_c to DQ tDQSQ_ Skew total,per group, 0.18 0.18 0.18 UI 6 DBI per access (DBI-Enabled) Min Min Min DQ output hold time (tQSH_ (tQSH_ (tQSH_ TBD UI tQH_DBI total from DQS_t, DQS_c DBI,tQSL_ DBI,tQSL_ DBI,tQSL_ (DBI-Enabled) DBI) DBI) DBI) DQ output window time tQW_tototal, per pin (DBI-En0.75 0.73 0.7 UI 3 tal_DBI abled) Data Strobe Timing DQS, DQS# differentCL(abs) tCL(abs) tCL(abs) tQSL t i a l o u t p u t l o w t i m e tCK(avg) 3,4 -0.05 -0.05 -0.05 (DBI-Disabled) DQS, DQS# differentCH(abs) tCH(abs) tCL(abs) tQSH tial output high time tCK(avg) 3,5 -0.05 -0.05 -0.05 (DBI-Disabled) DQS, DQS# differentCL(abs) tCL(abs) tCL(abs) tQSL_DBI t i a l o u t p u t l o w t i m e tCK(avg) 4,6 -0.045 -0.045 -0.045 (DBI-Enabled) DQS, DQS# differentCH(abs) tCH(abs) tCH(abs) tQSH_DBI tial output high time tCK(avg) 5,6 -0.045 -0.045 -0.045 (DBI-Enabled) a. The following Rx voltage and absolute timing requirements apply for DQ operating frequencies at or below 1333 for all speed bins. For example the TcIVW(ps) = 450ps at or below 1333 operating frequencies. 68 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  The deterministic component of the total timing. Measurementmethod tbd. 2  This parameter will be characterized and guaranteed by design. fid en tia l 3  This parameter is function of input clock jitter. These values assume the min tCH(abs) and tCL(abs). When the input clock jitter min tCH(abs) and tCL(abs) is 0.44 or greater of tck(avg) the min value of tQSL will be tCL(abs)-0.04 and tQSH will be tCH(abs) -0.04. 4  tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as it measured the next rising edge from an arbitrary falling edge. 5  tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as it measured the next rising edge from an arbitrary falling edge. on 6  This parameter is function of input clock jitter. These values assume the min tCH(abs) and tCL(abs). When the input clock jitter min tCH(abs) and tCL(abs) is 0.44 or greater of tck(avg) the min value of tQSL will be tCL(abs)-0.04 and tQSH will be tCH(abs) -0.04. an d C 8.6  DQ Rx Voltage and Timing The DQ input receiver mask for voltage and timing is shown Figure 1-34 is applied per pin. The “total” mask (VdIVW_total, TdiVW_total) defines the area the input signal must not encroach in ge d order for the DQ input receiver to successfully capture an input signal with a BER of lower than tbd. The mask is a receiver property and it is not the valid data-eye. XM T C Rx Mask Vcent_DQ (pin mid) Figure 8-34  DQ Receiver(Rx) Mask 69 ChangXin Memory Technologies, Inc. _ Confidential VdIVW Total Pr iv ile TdIVW_total LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 DQy DQx Vcent_DQx DQz Vcent_DQz fid en tia l Vcent_DQy Vref variation (component) Figure 8-35  Across Pin Vref DQ Voltage Variation Vcent_DQ(pin_mid) is defined as the midpoint between the largest Vcent_DQ voltage level and on the smallest Vcent_DQ voltage level across all DQ pins for a given DRAM component. Each DQ C Vcent is defined by the center, i.e., widest opening, of the cumulative data input eye as depicted in Figure 1-35. This clarifies that any DRAM component level variation must be accounted for an d within the DRAM Rx mask. The component level Vref will be set by the system to account for Ron ge d and ODT settings. DQS,DQS Data-in at DRAM Latch Internal composite Data-Eye Center aligned to DQS DQS_c DQS,DQS Data-in at DRAM Pin Non Minumum Data-Eye/Maximum Rx Mask ile DQS_t DQS_t DQS_c tDQS2DQx VdiVW_TOTAL Rx Mask DRAM Pins DQx Pr All DQ signals center aligned to the strobe at the DRAM internal latch XM T DQy VdiVW_TOTAL tDQS2DQy Rx Mask DRAM Pins tDQS2DQz C DQz Rx Mask DRAM Pins tDQ2DQ Figure 8-36  DQ to DQS tDQS2DQ and tDQ2DQ Timings at the DRAM Pins Referenced from the Internal Latch 70 ChangXin Memory Technologies, Inc. _ Confidential VdiVW_TOTAL DQx,y,z iv tDQS(min) tDQH(min) LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  The tDQS2DQ is measured at the center(midpoint) of the TdiVW window. 2  The DQz represents the max tDQS2DQ in this example 3  DQy represents the min tDQS2DQ in this example tf VdIVW Total fid en tia Rx Mask l tr TdIPW on Vcent_CA (pin mid) C Figure 8-37  DQ TdIPW and SRIN_dIVW Definition (for Each Input Pulse) an d Note: SRIN_dIVW=VdIVW_Total/(tr or tf), signal must be monotonic within tr and tf range. ge d Vcent_DQ Rx Mask Rx Mask VdIVW_total iv ile Rx Mask VIHL_AC(min)/2 VIHL_AC(min)/2 C XM T Pr Figure 8-38  DQ VIHL_AC definition (for Each Input Pulse) 71 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Table 8-44  DRAM DQs in Receive Mode * UI=tCK(avg)min/2 Parameter DQ-3200 Min - Max 140 Unit Note l Symbol DQ1600/1867a/2133/2400 Min Max 140 C XM T Pr iv ile ge d an d C on fid en tia VdIVW_total Rx Mask voltage - p-p total mV 1,2,3,4 Rx timing window total (At TdIVW_total 0.22 0.25 UI 1,2,4 VdIVW voltage levels) Rx timing window 1 bit toggle TBD TBD UI 1,2,4,12 TdIVW_1bit (At VdIVW voltage levels) DQ AC input pulse amplitude VIHL_AC 180 180 UI 5,13 pk-pk Input pulse width TdIPW DQ 0.45 0.45 UI 6 (At Vcent_DQ) tDQS2DQ DQ to DQS offset 200 800 200 800 ps 7 tDQ2DQ DQ to DQ offset 30 30 ps 8 tDQS2DQ_temp DQ to DQS tQSL 0.6 0.6 ps/° C 9 offset temperature variation tDQS2DQ_ DQ to DQS offset voltage vari33 33 ps/50 mV 10 volt ation Input Slew Rate over VdIVW_ 1 7 1 7 V/ns 11 SRIN_dIVW total tDQS2DQ_ DQ to DQS offset rank to rank 200 200 ps 14,15,16 rank2rank variation a. The Rx voltage and absolute timing requirements apply for all DQ operating frequencies at or below 1600 for all speed bins. For example TdIVW_total(ps) = 137.5ps at or below 1600 operating frequencies 72 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  The Data Rx mask voltage and timing parameters are applied per pin and includes the DRAM DQ to DQS voltage AC noise impact for frequencies >20 MHz and max voltage of 45mv pk-pk from DC-20MHz at a fixed temperature on the package. The voltage supply noise must comply to the component Min-Max DC operating conditions. fid en tia l 2  The design specification is a BER 20MHz and max voltage of 45mv pk-pk from DC-20MHz at a fixed temperature on the package. For tester measurement VDDQ = VDD2 is assumed. 11  Input slew rate over VdIVW Mask centered at Vcent_DQ(pin_mid). ile 12  Rx mask defined for a one pin toggling with other DQ signals in a steady state. 13  VIHL_AC does not have to be met when no transitions are occurring. iv 14  The same voltage and temperature are applied to tDQS2DQ_rank2rank. Pr 15  tDQS2DQ_rank2rank parameter is applied to multi-ranks per byte lane within a package consisting of the same design dies. C XM T 16  tDQS2DQ_rabk2rank support was added to JESD209-4B, some older devices designed to support JESD2094 and JESD209-4A may not support this parameter. Refer to vendor datasheet. 73 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9. AC Timing Parameters • Core AC Timing on Page 75 fid en tia l • Read AC Timing on Page 76 • tDQSCK Timing on Page 77 • Write AC Timing on Page 78 • VRCG Enable/Disable Timingon Page 79 • Frequency Set Point Timing on Page 85 • Write Leveling Timing on Page 85 an d • Command Bus Training AC Timing on Page 80 C • Mode Register Read/Write AC Timingon Page 79 on • Self Refresh AC Timing on Page 78 ge d • MPC [Write FIFO] AC Timing on Page 85 ile • DQS Interval Oscillator AC Timing on Page 86 • Read Preamble Training Timing on Page 86 Pr iv • ZQ Calibration Timingon Page 86 • ODT CA AC Timingon Page 86 C XM T • Power-Down AC Timing on Page 87 74 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.1  Core AC Timing Table 9-45  Core AC Timing Table 533/1066/1600/2133/2667/ 4267 3200/3733 tRAS + tRPab (with all bank precharge) tRAS + tRPpb (with per bank precharge) Core Parameters ACTIVATE-to-ACTIVATE command period (same bank) Data Rate Unit l Symbol Min/Max fid en tia Parameter MIN tSR MIN max(15ns, 3nCK) ns tXSR MIN max(tRFCab + 7.5ns, 2nCK) ns tXP MIN max(7.5ns, 5nCK) ns tCCD MIN Internal READ to PRECHARGE command delay tRTP MIN RAS-to-CAS delay tRCD MIN Row precharge time (single bank) tRPpb MIN Row precharge time (all banks) tRPab MIN tRAS MAX Row active time C ns 8 tCK(avg) max(7.5ns, 8nCK) ns max(18ns, 4nCK) ns max(18ns, 4nCK) ns max(21ns, 4nCK) ns an d ge d Minimum Self Refresh Time (Entry to Exit) Self Refresh exit to next valid command delay Exit Power-Down to next valid command delay CAS-to-CAS delay on tRC max(42ns, 3nCK) ns MIN Min(9 * tREFI * Refresh Rate, 70.2) us ( Refresh Rate is specified by MR4, OP[2:0] ) us tWR MIN max(18ns, 6nCK) ns tWTR MIN max(10ns, 8nCK) ns Active bank-A to active bank-B1 tRRD MIN max(10ns, 4nCK) Max(7.5ns, 4nCK)2 ns Precharge to Precharge Delay tPPD MIN 4 4 tCK Four-bank ACTIVATE window tFAW MIN 40 302 ns ile tRAS WRITE recovery time C XM T Pr WRITE-to-READ delay iv Row active time 75 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.2  Read AC Timing Table 9-46  Read AC Timing Table Unit l tCK(avg) tCK(avg) tCK(avg) fid en tia Data Rate 533/1066/1600/2133/2667/3200/3733/4267 1.8 0.4 1.4 (RL x tCK) + tDQSCK(Min) - 200ps on (RL x tCK) + tDQSCK(Max) + tDQSQ(Max) + (BL/2 x tCK) - 100ps (RL x tCK) + tDQSCK(Min) - (tRPRE(Max) x tCK) 200ps (RL x tCK) + tDQSCK(Max) +(BL/2 x tCK) + (RPST(Max) x tCK) - 100ps 0.18 C XM T Pr iv ile ge d an d C Parameter Symbol Min/Max Core Parameters READ preamble tRPRE MIN 0.5 tCK READ postamble tRPST MIN 1.5 tCK READ postamble tRPST MIN DQ low-impedance time tLZ(DQ) MIN from CK_t, CK_c DQ high impedance time tHZ(DQ) MAX from CK_t, CK_c DQS_c low-impedance time tLZ(DQS) MIN from CK_t, CK_c DQS_c high impedance tHZ(DQS) MAX time from CK_t, CK_c DQS-DQ skew tDQSQ MAX 76 ChangXin Memory Technologies, Inc. _ Confidential ps ps ps ps UI LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.3  tDQSCK Timing Table 9-47  tDQSCK Timing Table Min 1.5 tDQSCK_temp - tDQSCK_volt - Max 3.5 Unit ns Note 1 l Symbol tDQSCK fid en tia Parameter DQS Output Access Time from CK_t/CK_c DQS Output Access Time from CK_t/CK_c -Temperature Variation DQS Output Access Time from CK_t/CK_c -Voltage Variation Note: 4 ps/°C 2 7 ps/mV 3 C 2  tDQSCK_temp max delay variation as a function of Temperature. on 1  Includes DRAM process, voltage and temperature variation. It includes the AC noise impact for frequencies > 20 MHz and max voltage of 45 mV pk-pk from DC-20 MHz at a fixed temperature on the package. The voltage supply noise must comply to the component Min-Max DC Operating conditions. an d 3  tDQSCK_volt max delay variation as a function of DC voltage variation for VDDQ and VDD2. tDQSCK_ volt should be used to calculate timing variation due to VDDQ and VDD2 noise< 20 MHz. Host controller do not need to account for any variation due to VDDQ and VDD2 noise > 20 MHz. The voltage supply noise must comply to the component Min-Max DC Operating conditions. The voltage variation is defined as the Max[abs{tDQSCKmin@V1-tDQSCKmax@V2}, abs{tDQSCKmax@V1-tDQSCKmin@V2}]/abs{V1-V2}. For tester measurement VDDQ = VDD2 is assumed. ge d Table 9-48  CK to DQS Rank to Rank Timing Table Parameter Symbol Min/Max Note: tDQSCK_rank2rank Max 1.0 Unit Note ns 1,2 Pr variation 1600/1866/2133/2667/3200/4267 iv CK to DQS Rank to Rank ile Read Timing Data Rate 1  The same voltage and temperature are applied to tDQS2CK_rank2rank. C XM T 2  tDQSCK_rank2rank parameter is applied to multi-ranks per byte lane within a package consisting of the same design dies. 77 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.4  Write AC Timing Table 9-49  Write AC Timing Table Min 0.2 Min 0.2 Min Min Min 1.8 0.4 1.4 Note: Parameter ge d Table 9-50  Self Refresh AC Timing Table tCK(avg) tCK(avg) tCK(avg) tCK(avg) Note Min Max(1.75ns, 3tCK) ns 1 Min Max(15ns, 3tCK) ns 1 Min Max(tRFCab +7.5ns,2tCK) ns 2 ile iv tCK(avg) Unit Pr Note: tCK(avg) tCK(avg) Data Rate 533/1066/1600/2133/2667/3200/3733/4267 Symbol Min/Max Self Refresh Timing Delay from SRE command tESCKE to CKE Input low Minimum Self Refresh Time tSR Exit Self Refresh to Valid tXSR commands tCK(avg) an d The length of Write Postamble depends on MR3 OP1 setting. 9.5  Self Refresh Timing Unit l Min Max Min Min Data Rate 533/1066/1600/2133/2667/3200/3733/4267 0.75 1.25 0.4 0.4 fid en tia Min/Max on Symbol Write Timing Write command to 1st tDQSS DQS latching DQS input high-level tDQSH DQS input low-level width tDQSL DQS falling edge to CK tDSS setup time DQS falling edge hold tDSH time from CK Write preamble tWPRE 0.5 tCK Write postamble tWPST1 1.5 tCK Write postamble tWPST1 C Parameter XM T Delay time has to satisfy both analog time(ns) and clock count(tCK). It means that tESCKE will not expire until CK has C toggled through at least 3 full cycles (3 *tCK) and 1.75ns has transpired. 78 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.6  Mode Register Read/Write AC Timing Symbol Min/Max Data Rate Unit tMRRI Min tRCD + 3nCK tMRR Min 8 nCK tMRW Min MAX(10ns,10nCK) - tMRD Min max(14ns,10nCK) - C 533/1066/1600/2133/2667/3200/3733/4267Mbps Min Max 200 - 100 an d - C XM T Pr iv ile ge d Speed Parameter Symbol VREF high current tVRCG_ENABLE mode enable time VREF high current tVRCG_DISABLE mode disable time on 9.7  VRCG Enable/Disable Timing Table 9-52  VRCG Enable/Disable Timing Table - fid en tia Parameter Mode Register Read/Write Timing Additional time after tXP has expired until MRR command may be issued MODE REGISTER READ command period MODE REGISTER WRITE command period Mode register set command delay l Table 9-51  Mode Register Read/Write AC Timing Table 79 ChangXin Memory Technologies, Inc. _ Confidential Unit ns LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.8  Command Bus Training AC Timing Table 9-53  Command Bus Training AC Timing Table Data Rate 533/1066/1600/2133/2667/3200/3733/4267 Min Max(5ns, 5nCK) - Min 2 ns 2 ns 20 ns RU(tADR/tCK ) tCK 10 ns 250 ns Max 250 ns Max 80 ns Min 2tck + tXP (tXP = max(7.5ns, 5nCK)) - Min max(7.5ns, 5nCK)) - Min 2 tCK Min 10 ns Min Max(1.75ns, 3nCK) - Min 1.5 ns Min 20 ns Min 20 ns Min Min Min Max(5nCK, 200ns) Max(5nCK, 200ns) Max(5nCK, 250ns) - l Min Min Min ile iv Pr on Max C XM T Unit fid en tia Min ge d Command Bus Training Timing Valid Clock Requirement after tCKELCK CKE Input low Data Setup for VREF Training tDStrain Mode Data Hold for VREF Training tDHtrain Mode Asynchronous Data Read tADR CA Bus Training Command to CA Bus Training Command tCACD2 Delay Valid Strobe Requirement betDQSCKE1 fore CKE Low First CA Bus Training ComtCAENT mand Following CKE Low VREF Step Time– multiple tVREFCA_LONG steps VREF Step Time– one step tVREFCA_SHORT Valid Clock Requirement betCKPRECS fore CS High Valid Clock Requirement after tCKPSTCS CS High Minimum delay from CS to DQS toggle in command bus tCS_VREF training Minimum delay from CKE High tCKEHDQS to Strobe High Impedance Valid Clock Requirement betCKCKEH fore CKE Input High CA Bus Training CKE High to tMRZ DQ Tri-state ODT turn-on Latency from tCKELODTon CKE ODT turn-off Latency from tCKELODToff CKE tXCBT_Short Exit Command Bus Training tXCBT_Middle Mode to next valid command delay3 tXCBT_Long Min/Max C Symbol an d Parameter 80 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Note: 1  DQS_t has to retain a low level during tDQSCKE period, as well as DQS_c has to retain a high level. 2  If tCACD is violated, the data for samples which violate tCACD will not be available, except for the last sample (where tCACD after this sample is met). Valid data for the last sample will be available after tADR. fid en tia l 3  Exit Command Bus Training Mode to next valid command delay Time depends on value of VREF(CA) setting: MR12 OP[5:0] and VREF(CA) Range: MR12 OP[6] of FSP-OP 0 and 1. The details are shown in Table 61. Additionally exit Command Bus Training Mode to next valid command delay Time may affect VREF(DQ) setting. Settling time of VREF(DQ) level is same as VREF(CA) level. Data Rate 533/1066/1600/2133/2667/3200/3733/4267 Min max(7.5ns, 3nCK) tCK Max 20 ns RU(tADR/tCK ) tCK Min Min Min Min ile iv Pr 250 Unit Note 1 ns 2tCK + tXP (tXP = max(7.5ns, 5nCK)) max(7.5ns, 5nCK)) ge d Command Bus Training Timing Clock and Command Valid tCKELCK after CKE Low Asynchronous Data Read tADR CA Bus Training Command to CA Bus Training ComtCACD mand Delay First CA Bus Training ComtCAENT mand Following CKE Low Valid Clock Requirement tCKPRECS before CS High Valid Clock Requirement tCKPSTCS after CS High Clock and Command Valid tCKCKEH before CKE High CA Bus Training CKE High tMRZ to DQ Tri-state ODT turn-on Latency from tCKELODTon CKE ODT turn-off Latency from tCKELODToff CKE Exit Command Bus Training tXCBT_Short Mode to next valid com- tXCBT_Middle mand delaytXCBT_Long Min/Max C Symbol an d Parameter on Table 9-54  Command Bus Training AC Timing Table for Mode 1 Min 2 tCK Min 1.5 ns Min 20 ns Min 20 ns Min Min Min Max(5nCK, 200ns) Max(5nCK, 200ns) Max(5nCK, 250ns) 2 2 2 XM T Note: 1  If tCACD is violated, the data for samples which violate tCACD will not be available, except for the last sample (where tCACD after this sample is met). Valid data for the last sample will be available after tADR. C 2  Exit Command Bus Training Mode to next valid command delay Time depends on value of VREF(CA) setting: MR12 OP[5:0] and VREF(CA) Range: MR12 OP[6] of FSP-OP 0 and 1. Additionally exit Command Bus Training Mode to next valid command delay Time may affect VREF(DQ) setting. Settling time of VREF(DQ) level is same as VREF(CA) level. 81 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Data Rate 533/1066/1600/2133/2667/3200/3733/4267 Min Max(5ns,5nCK) Min 2tCK + tXP (tXP = max(7.5ns, 5nCK)) Min max(7.5ns, 5nCK)) - Min 10 ns Min 250 ns Max 250 ns 2 Max 200 ns 3 100 ns 4 2 ns 2 ns Min Max Min Max Max 16 80 5 100 20 ns ns ns ns ns Min 0 ns Min Max Min Max Min Max 3 10 10 60 3 10 ns ns ns ns ns ns Min Max(10ns, 5nCK) - Min 2 ns Min Max(110ns, 4nCK) Min 10 Min Max(1.75ns,3nCK) Max 20 ns Max 20 ns Min Min ile tDQ7SH iv DQ7sample hold time C XM T Pr Asynchronous Data Read tADSPW Pulse Width Hi-Z to asynchronous VreftHZ2VREF CA valid data Read to Write Delay at CBT tCBTRTW mode CA Bus Training Command to CA Bus Training ComtCACD mand Delay Minimum delay from CKE High to Strobe High Imped- tCKEHDQS ance Clock and Command Valid tCKCKEH before CKE High ODT turn-on Latency from tCKELODTon CKE ODT turn-off Latency from tCKELODToff CKE for ODT_CA Unit Note l ns - fid en tia Max ge d Command Bus Training Timing Valid Clock Requirement tCKELCK after CKE Input low Valid Clock Requirement tCKPRECS before CS High Valid Clock Requirement tCKPSTCS after CS High Valid Strobe Requirement tDQSCKE before CKE Low First CA Bus Training ComtCAENT mand Following CKE Low VREF Step Time - Long tVREFCA_Long tVREFCA_MidVREF Step Time - Middle dle tVREFCA_ VREF Step Time - Short Short Data Setup for Vref Training tDStrain Mode Data Hold for Vref Training tDHtrain Mode Asynchronous Data Read tADVW Valid Window DQS Input period at CBT tDQSICYC mode Asynchronous Data Read tADR DQS_c high impedance tHZCBT time from CS High Asynchronous Data Read tAD2DQ7 to DQ7 toggle Min/Max on Symbol an d Parameter C Table 9-55  Command Bus Training AC Timing Table for Mode 2 82 ChangXin Memory Technologies, Inc. _ Confidential ns 1 LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 Min/Max Data Rate 533/1066/1600/2133/2667/3200/3733/4267 Max 20 ns Max 20 ns Max Max(10ns, 5nCK) Min Min Min Max(5nCK, 200ns) Max(5nCK, 200ns) Max(5nCK, 250ns) ODT turn-off Latency from tCKEHODToff CKE for ODT_DQ and DQS ODT_DQ turn-off Latency from CS high during CB tODToffCBT Training ODT_DQ turn-on Latency from the end of Valid Data tODTonCBT out Exit Command Bus Training tXCBT_Short Mode to next valid com- tXCBT_Middle mand delay tXCBT_Long Unit Note l Symbol fid en tia Parameter Note: 5 5 5 on 1  DQS_t has to retain a low level during tDQSCKE period, as well as DQS_c has to retain a high level. 2  VREFCA_Long is the time including up to VREFmin to VREFmax or VREFmax to VREFmin change across the VREFDQ Range in VREF voltage. C 3  VREF_Middle is at least 2 stepsizes increment/decrement change within the same VREFDQ range in VREF voltage. an d 4  VREF_Short is for a single stepsize increment/decrement change in VREF voltage. C XM T Pr iv ile ge d 5  Exit Command Bus Training Mode to next valid command delay Time depends on value of VREF(CA) setting: MR12 OP[5:0] and VREF(CA) Range: MR12 OP[6] of FSP-OP 0 and 1. 83 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.9  Frequency Set Point Timing Table 9-56  Frequency Set PointTiming Table Min 200 ns 200 ns 250 ns Min max(7.5ns, 4nCK) - Min - Min Min max(7.5ns, 4nCK) C Frequency Set Point parameters Frequency Set Point tFC_Short1 Switching Time Minimum Self Refresh tFC_Middle1 Time Exit Self Refresh to Valid tFC_Long1 commands Valid Clock Requirement tCKFSPE after Entering FSP Change Valid Clock Requirement before 1st Valid Command tCKFSPX after FSP change Unit l Data Rate 533/1066/1600/2133/2667/3200/3733/4267 Min/Max fid en tia Symbol on Parameter an d Note: Frequency Set Point Switching Time depends on value of VREF(CA) setting: MR12 OP[5:0] and VREF(CA) Range: MR12 OP[6] of FSP-OP 0 and 1. Additionally change of Frequency Set Point may affect VREF(DQ) setting. Settling time C XM T Pr iv ile ge d of VREF(DQ) level is same as VREF(CA) level. 84 ChangXin Memory Technologies, Inc. _ Confidential LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.10  Write Leveling Timing Table 9-57  Write Leveling Timing Table tWLWPRE First DQS_t/DQS_c edge after write leveling mode is programmed tWLMRD Write leveling output delay tWLO Mode register set command delay tMRD Valid Clock Requirement before DQS Toggle tCKPRDQS Valid Clock Requirement after DQS Toggle tCKPSTDQS Unit tCK l Value 20 20 40 0 20 max(14ns, 10nCK) max(7.5ns, 4nCK) max(7.5ns, 4nCK) - fid en tia tWLDQSEN Min/Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max tCK tCK ns ns on Write preamble for Write Leveling Symbol C Parameter DQS_t/DQS_c delay after write leveling mode is programmed - Parameter Symbol Write Leveling Parameters Parameters Write leveling hold time Write leveling setup time Write leveling input valid window Min/Max Min Min Min ge d tWLH tWLS tWLIVW an d Table 9-58  Write Leveling Setup and Hold Time 1600 Data Rate 2400 3200 150 150 240 100 100 160 75 75 120 4266 50 50 90 ile 9.11  MPC [Write FIFO] AC Timing Symbol Min/Max Data Rate 533/1066/1600/2133/2667/3200/3733/4267 tMPCWR Min tRCD + 3nCK Pr Parameter iv Table 9-59  MPC [Write FIFO] AC Timing Table C XM T MPC Write FIFO Timing Additional time after tXP has expired until MPC [Write FIFO] command may be issued 85 ChangXin Memory Technologies, Inc. _ Confidential Unit ps ps ps LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.12  DQS Interval Oscillator AC Timing Table 9-60  DQS Interval Oscillator AC Timing Table Min/Max Min Note: Start DQS OSC command is prohibited until tOSCO(Min) is satisfied. 9.13  Read Preamble Training Timing Table 9-61  Read Preamble Training Timing Table Symbol tZQCAL tZQLAT tZQRESET ge d Parameter ZQ Calibration Time ZQ Calibration Latch Time ZQ Calibration Reset Time an d 9.14  ZQ Calibration Timing Table 9-62  ZQCal Timing Table ile 9.15  ODT CA AC Timing Min - on Symbol tSDO Max Min(12nCK, 20ns) Min /Max Min Min Min Value 1 max(30ns,8nCK) max(50ns,3nCK) Table 9-63  ODT CA AC Timing Table iv Speed Parameter ODT CA Value Update Time 600/1866/2133/2400/3200/4266 MIN MAX RU(TBDns/tCK(avg)) - C XM T Pr Symbol tODTUP Unit ns C Parameter Delay from MRW command to DQS Driven Value Max(40ns,8nCK) l Symbol tOSCO fid en tia Parameter Delay time from OSC stop to Mode Register Readout 86 ChangXin Memory Technologies, Inc. _ Confidential Unit us ns ns LPDDR4X SDRAM Datasheet Preliminary Ver. 0.4 9.16  Power-Down AC Timing Table 9-64  Power-Down AC Timing Data Rate 533/1066/1600/2133 /2667/3200/3733/4267 Unit Min Max(7.5ns,4nCK) - Min Max(1.75ns,3nCK) ns 1 Min Max(5ns,5nCK) ns 1 Min 1.75 ns Max(5ns,5nCK) ns Max(1.75ns,3nCK) ns 1 Max(7.5ns,5nCK) ns 1 Min 1.75 ns Min Max(7.5ns,5nCK) ns Min Max(14ns,10nCK) ns 1 Min Max(1.75ns,3nCK) ns 1 Min Min ile Note: l Note fid en tia on Min ge d Power Down Timing CKE minimum pulse width (HIGH tCKE and LOW pulse width) tCKE Delay from valid command to CKE tCMDCKE input LOW Valid Clock Requirement after CKE tCKELCK Input low Valid CS Requirement before CKE tCSCKE Input Low Valid CS Requirement after CKE tCKELCS Input low Valid Clock Requirement before tCKCKEH CKE Input High Exit power- down to next valid tXP command delay Valid CS Requirement before CKE tCSCKEH Input High Valid CS Requirement after CKE tCKEHCS Input High Valid Clock and CS Requirement after CKE Input low after MRW tMRWCKEL Command Valid Clock and CS Requirement after CKE Input low after ZQ CalitZQCKE bration Start Command Min/Max C Symbol an d Parameter C XM T Pr iv Delay time has to satisfy both analog time(ns) and clock count(nCK). 87 ChangXin Memory Technologies, Inc. _ Confidential
CXDB5CCAM-MK 价格&库存